
Rapier project
A hardware interface system for Linux

Michael B. Sørensen
Århus Tekniske Skole, in Århus, Denmark.

4th of January 2005



2



Abstract

Language This project documentation is written in English even though the
authors native language is Danish. English was chosen because of the license
chosen for the hardware and software. For the project to be read and understood
by most people around the world, English was the best choice.

Project subject This project is about the design, assembly and test of an in-
terface system between a PC running Linux and external devices. The interface
system are capable of handling analog and digital signals from external devices.
The interface system is operated from a graphical user interface on the PC.

The author This project is about a hardware interface system designed by
me and the software to control it. The project is a part of my �nal exam which
hopefully will occur in January 2005. I'm in the �nal semester of a 2 year
training at Århus Tekniske Skole, in Århus, Denmark.

Result The aim of the project was reached.

Development description I designed the hardware from a modular point
of view. The software proved to be the biggest challenge. Especially the GUI
and serial communication. I got most of the help from a Linux programming
mailing list and several searches on the Internet through Google.

Documentation license This documentation is free to use, modify and dis-
tribute as long as the author is mentioned.

Hardware license The hardware design is free to use, modify and distribute.

Software license The software is free to use, modify and distribute under
the terms of GPL (GNU General Public License).



4



Contents

1 Problem description 17
1.1 The main idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Interface connection type . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 PCI I/O card . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.2 USB I/O card . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.3 Parallel port . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.4 Serial port . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.5 IR port . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.6 External controller . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Choosing a programming language . . . . . . . . . . . . . . . . . 21
1.4 Developing the software . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Board Communication . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Fan IN and fan OUT . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.1 Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.6.2 System Bus . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.7 Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.8 Distributed CPU power . . . . . . . . . . . . . . . . . . . . . . . 23
1.9 Decoupling capacitors . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Speci�cations 25
2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 General speci�cations . . . . . . . . . . . . . . . . . . . . 25
2.1.2 Z8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Adaptor Board . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.4 Bus system . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.5 Monitoring and Power Board . . . . . . . . . . . . . . . . 26



6 CONTENTS

2.1.6 Digital Input Board . . . . . . . . . . . . . . . . . . . . . 26
2.1.7 Digital Output Board . . . . . . . . . . . . . . . . . . . . 26
2.1.8 Analog Input Board . . . . . . . . . . . . . . . . . . . . . 27
2.1.9 Analog Output Board . . . . . . . . . . . . . . . . . . . . 27
2.1.10 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 General speci�cations . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Z8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Serial Communication . . . . . . . . . . . . . . . . . . . . 28
2.2.5 3rd. party software . . . . . . . . . . . . . . . . . . . . . . 28

3 Hardware Block/Module description 29
3.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Calibration of hardware . . . . . . . . . . . . . . . . . . . 31

3.2 The Bus System . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Adaptor board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.4 Bus communication . . . . . . . . . . . . . . . . . . . . . 35
3.3.5 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.6 Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.7 Partlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.8 Test procedures . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Monitoring and power board . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.4 Bus communication . . . . . . . . . . . . . . . . . . . . . 39
3.4.5 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.6 Schematics of the board . . . . . . . . . . . . . . . . . . . 40
3.4.7 Schematics of the power cable . . . . . . . . . . . . . . . . 41



CONTENTS 7

3.4.8 Partlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.9 Test procedure . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Digital Output Board . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 Photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.4 Bus communication . . . . . . . . . . . . . . . . . . . . . 45
3.5.5 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.6 Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.7 Partlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.8 Test procedures . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Digital Input Board . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.2 Photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.4 Bus communication . . . . . . . . . . . . . . . . . . . . . 52
3.6.5 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.6 Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6.7 Partlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.8 Test procedure . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Analog Output Board . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.2 Photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7.4 Bus communication . . . . . . . . . . . . . . . . . . . . . 60
3.7.5 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7.6 Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7.7 Partlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7.8 Calibration procedures . . . . . . . . . . . . . . . . . . . . 62
3.7.9 Test procedures . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Analog Input Board . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.8.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.8.2 Photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.8.3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . 64



8 CONTENTS

3.8.4 Bus communication . . . . . . . . . . . . . . . . . . . . . 64
3.8.5 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.8.6 Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.8.7 Partlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.8.8 Test procedures . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Software Block/Module description 67
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Rapier software communication . . . . . . . . . . . . . . . 70
4.1.2 Rapier command path . . . . . . . . . . . . . . . . . . . . 71

4.2 Rapier Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.3 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.4 Protocol in use . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.5 Sending instructions or data . . . . . . . . . . . . . . . . . 73

4.3 GUI software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.1 Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.2 Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.3 Examples of use . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Z8 software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 main.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.3 driver.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Project �le management . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.1 Example 1 - a schematic is updated . . . . . . . . . . . . 86
4.5.2 Example 2 - a html �le is updated . . . . . . . . . . . . . 86
4.5.3 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.4 The interface . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.5 Source code . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 System integration 89
5.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.1 Resources of help . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.2 Project �les management . . . . . . . . . . . . . . . . . . 89



CONTENTS 9

5.1.3 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Connecting the hardware . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Linearity problems . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.1 Testing the hardware from a terminal program . . . . . . 96
5.4.2 Testing the hardware from the GUI . . . . . . . . . . . . 103

5.5 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusion 109
6.1 Historical review . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Final conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Appendix 113
7.1 Users manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1.1 Prerequisite . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.1.2 Installation procedure . . . . . . . . . . . . . . . . . . . . 114

7.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3 main.c File Reference . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3.1 Function Documentation . . . . . . . . . . . . . . . . . . . 125
7.3.2 Variable Documentation . . . . . . . . . . . . . . . . . . . 126

7.4 main.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4.1 Function Documentation . . . . . . . . . . . . . . . . . . . 128
7.4.2 Variable Documentation . . . . . . . . . . . . . . . . . . . 128

7.5 driver.c File Reference . . . . . . . . . . . . . . . . . . . . . . . . 129
7.5.1 Function Documentation . . . . . . . . . . . . . . . . . . . 130

7.6 driver.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . 136
7.6.1 De�ne Documentation . . . . . . . . . . . . . . . . . . . . 137
7.6.2 Function Documentation . . . . . . . . . . . . . . . . . . . 138

7.7 main.cpp File Reference . . . . . . . . . . . . . . . . . . . . . . . 144
7.7.1 Function Documentation . . . . . . . . . . . . . . . . . . . 144

7.8 mainwindow.ui.h File Reference . . . . . . . . . . . . . . . . . . . 145
7.8.1 Variable Documentation . . . . . . . . . . . . . . . . . . . 145

7.9 Rapierproject code . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.10 Unnumbered pages . . . . . . . . . . . . . . . . . . . . . . . . . . 162



10 CONTENTS



List of Tables

1.1 Control signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2 Ports and busses . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Bus System Description . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Selecting a board . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Deselecting a board method 1 . . . . . . . . . . . . . . . . . . . . 46
3.4 Deselecting a board method 2 . . . . . . . . . . . . . . . . . . . . 47
3.5 Output functions to a board . . . . . . . . . . . . . . . . . . . . . 47
3.6 Input functions to a board . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Protocol in use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Low level functions . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Mid level functions . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 High level functions . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Ports and busses . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



12 LIST OF TABLES



List of Figures

3.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Detailed system overview . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Adaptor Board Photo. . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Adaptor Board block diagram . . . . . . . . . . . . . . . . . . . . 35
3.5 Adaptor Board Schematics. . . . . . . . . . . . . . . . . . . . . . 36
3.6 Monitoring and Power Board Photo. . . . . . . . . . . . . . . . . 38
3.7 Monitoring and Power Board Block Diagram. . . . . . . . . . . . 39
3.8 Darlington . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9 Monitoring and Power Board schematic. . . . . . . . . . . . . . . 41
3.10 Power Cable schematic. . . . . . . . . . . . . . . . . . . . . . . . 41
3.11 Digital Output Board Photo. . . . . . . . . . . . . . . . . . . . . 44
3.12 Digital Output Board Block Diagram. . . . . . . . . . . . . . . . 45
3.13 8 bit comparator input . . . . . . . . . . . . . . . . . . . . . . . . 48
3.14 Digital Output Board schematic. . . . . . . . . . . . . . . . . . . 49
3.15 Digital Input Board Photo. . . . . . . . . . . . . . . . . . . . . . 51
3.16 Digital Input Board Block Diagram. . . . . . . . . . . . . . . . . 52
3.17 Opto coupler output . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.18 Opto coupler input . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.19 Digital Input Board schematic. . . . . . . . . . . . . . . . . . . . 56
3.20 Analog Output Board Photo. . . . . . . . . . . . . . . . . . . . . 59
3.21 Analog Output Board block diagram. . . . . . . . . . . . . . . . 60
3.22 Analog Output Board schematic. . . . . . . . . . . . . . . . . . . 61
3.23 Analog Input Board Photo. . . . . . . . . . . . . . . . . . . . . . 63
3.24 Analog Input Board block diagram. . . . . . . . . . . . . . . . . . 64
3.25 Analog Input Board schematic. . . . . . . . . . . . . . . . . . . . 64



14 LIST OF FIGURES

4.1 Hardware and software block diagram. . . . . . . . . . . . . . . . 68
4.2 Rapier software communication diagram. . . . . . . . . . . . . . . 70
4.3 Rapier command path diagram. . . . . . . . . . . . . . . . . . . . 71
4.4 Rapier GUI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Rapier GUI connections. . . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Updating board id. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7 Updating output voltage. . . . . . . . . . . . . . . . . . . . . . . 79
4.8 Updating input voltage. . . . . . . . . . . . . . . . . . . . . . . . 80
4.9 Z8 code overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.10 Rapier project �le management system. . . . . . . . . . . . . . . 88

5.1 Loop back for testing purpose. . . . . . . . . . . . . . . . . . . . 92
5.2 Optimal linearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Output linearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 Input linearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5 Overall linearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6 Starting minicom. . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.7 Minicom after start. . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.8 Minicom after addressing a board. . . . . . . . . . . . . . . . . . 98
5.9 minicom after start. . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.10 Analog output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.11 Performing AD conversion. . . . . . . . . . . . . . . . . . . . . . 102
5.12 Analog output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1 Rapier GUI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2 Rapier GUI analog input and output. . . . . . . . . . . . . . . . 117
7.3 Rapier GUI analog input voltage. . . . . . . . . . . . . . . . . . . 117
7.4 Rapier GUI analog output board id. . . . . . . . . . . . . . . . . 118
7.5 Rapier GUI analog output voltage. . . . . . . . . . . . . . . . . . 118
7.6 Rapier GUI digital input and output. . . . . . . . . . . . . . . . . 119
7.7 Rapier GUI digital input board id. . . . . . . . . . . . . . . . . . 119
7.8 Rapier GUI digital input. . . . . . . . . . . . . . . . . . . . . . . 119
7.9 Rapier GUI digital output board id. . . . . . . . . . . . . . . . . 120
7.10 Rapier GUI digital output. . . . . . . . . . . . . . . . . . . . . . 120
7.11 Rapier GUI communication log. . . . . . . . . . . . . . . . . . . . 121



LIST OF FIGURES 15

7.12 Rapier GUI quit button. . . . . . . . . . . . . . . . . . . . . . . . 121
7.13 Looping output to input. . . . . . . . . . . . . . . . . . . . . . . 122



16 LIST OF FIGURES



Chapter 1

Problem description

1.1 The main idea
This project is about designing an interface system for a PC, capable of

electronically measure and control the real world. The system will be controlled
through a GUI1.

The system will be build with modules and highly scaleable. The hardware
will be based on PCB's2 on a custom bus system.

As aid in the management of project �les, upload releases to the Internet
(http://rapier.sourceforge.net/) and backup purpose, a project �le management
system is written.

Hardware:

• 1 analog ADC3 input

• 8 digital inputs

• 8 digital outputs

• 1 analog DAC4 output

• Monitor board

• Easy to maintain and trouble shoot

• External power supply(not included in this project)
1Graphical User Interface
2Printed Circuit Board
3Analog to Digital Converter
4Digital to Analog Converter



18 CHAPTER 1. PROBLEM DESCRIPTION

Software:

• Easy to use graphical interface

• Support for all hardware functionality

Project �le management:

• Backup �les.

• Distribute released �les to sourceforge.net through ssh5.

• Update drawings, pictures and schematics in documentation and home-
page.

• Gathering source code from IDE6 projects.

• Version control through "rsync"7.

Practical applications

• Measure temperature.

• Detect daylight.

• Turn on relays.

• Light shows.

• DDS functionality.8

• Test equipment.

• Process control.

5In computing, Secure shell, or SSH, is both a computer program and an associated network
protocol designed for logging into and executing commands on a remote computer. It is
intended to replace the earlier rlogin, telnet and rsh protocols, and provides secure encrypted
communications between two untrusted hosts over an insecure network.

6An integrated development environment (IDE) (also known as an integrated design en-
vironment and integrated debugging environment) is computer software to help computer
programmers develop software.

7rsync is a utility which synchronizes �les and directories between two locations while
minimizing data transfer.

8Direct Digital Synthesis is a method to digitally create arbitrary waveforms and frequen-
cies from a single source �xed frequency.



1.2. INTERFACE CONNECTION TYPE 19

1.2 Interface connection type
There are 4 types of connection from the PC to the external inter-

face/controller:

• PCI9 I/O10 card

• USB11 I/O card

• Communication through the parallel port

• Communication through the serial port

• Communication through the IR port

1.2.1 PCI I/O card

Pro:

• Available driver means ready to go

• Relative high speed

Con:

• Expensive

• Proprietary driver

1.2.2 USB I/O card

Pro:

• Cheaper than PCI I/O card

• Connect to any modern PC

Con:

• More di�cult to write a driver
9The Peripheral Component Interconnect standard (in practice almost always shortened

to PCI) speci�es a computer bus for attaching peripheral devices to a computer motherboard.
10Input/output, or I/O, is the collection of interfaces that di�erent functional units (sub-

systems) of an information processing system use to communicate with each other, or to the
signals (information) sent through those interfaces.

11Universal Serial Bus (USB) provides a serial bus standard for connecting devices, usually
to a computer, but it also is in use on other devices such as set-top boxes, game consoles and
PDAs.



20 CHAPTER 1. PROBLEM DESCRIPTION

1.2.3 Parallel port

Pro:

• Connect to any PC

• Cheap technology

• Driver available

Con:

• Relatively slow

• Traditionally a one way communication

1.2.4 Serial port

Pro:

• Connect to any PC

• Cheap technology

• Driver available

• Easy to communicate with

Con:

• Slowest speed

1.2.5 IR port
12

Pro:

• Connect to a laptop PC

• Cheap technology

• Driver available

• Easy to communicate with
12IR is an abbreviation of Infra Red



1.3. CHOOSING A PROGRAMMING LANGUAGE 21

Con:

• Slowest speed

• Must have visual contact

Conclusion After much research and some interviews, the decision fell upon
serial connection because of the above mentioned bene�ts.

1.2.6 External controller

The Z8 microcontroller was chosen because of available knowledge. But there
are several bene�ts:

• Cheap

• Easy to use the serial line to communicate

• A great deal of source code

Future versions will be based on either Atmel AVR13 microcontroller or the
Hitachi H814 due to the fact that compilers exists for Linux operating system.

1.3 Choosing a programming language
There are several programming languages to choose between. Each language

has its advantages. The project can be split into the following parts:

• Z8 microcontroller

• GUI

• Project �le management

The relevant languages available:

• BASH Shell scripting (project �le management)15.

• C16 (Z8).
13The Atmel AVR is a family of RISC microcontrollers from Atmel.
14H8 is the name of a large family of 8-bit and 16-bit microcontrollers made by Rene-

sas Technology Corp., originating in the early 1990s within Hitachi Semiconductor and still
actively evolving as of 2004.

15Bash is a UNIX command shell written for the GNU project. Its name is an acronym
for Bourne-again shell - a pun on the Bourne shell (sh), which was an early, important UNIX
shell.

16The C programming language is a low-level standardized programming language developed
in the early 1970s by Ken Thompson and Dennis Ritchie for use on the UNIX operating system.



22 CHAPTER 1. PROBLEM DESCRIPTION

• C++17/QT18 (GUI).

1.4 Developing the software
It is important to choose a good IDE for the task at hand. For this project I
will use QT designer, Kdevelop and Z8 IDE. QT designer and Kdevelop is for
Linux, and Z8 IDE is for Windows.
Very usefull tools:

• Doxygen

• rsync

1.5 Board Communication

Control signals
Signal Name Description
Deselect Board DB Deselects the board.
Address Decode AD Decodes the address by comparing ad-

dress and ID set with DIP switch.
Function Enable Output FEO Enables the output function of a board.
Function Enable Input FEI Enables the input function of a board.
Address Enable AE Latches the address for later AD.
Deselect Board DB Deselects all boards. Not used in cur-

rent version but kept for future use.

Table 1.1: Control signals

Control signals
Port Description
E Control Bus
G Address/Data Bus
H Analog inputs

Table 1.2: Ports and busses

1.6 Fan IN and fan OUT
19

17C++ (pronounced "sea plus plus") is a general-purpose computer programming language.
18In computer programming, the Qt toolkit is a cross-platform graphical widget toolkit for

the development of GUI programs.
19Fan-out is a term that de�nes the maximum number of digital inputs that the output of

a single logic gate can feed. Most transistor-transistor logic (TTL) gates can feed up to 10
other digital gates or devices. Thus, a typical TTL gate has a fan-out of 10.



1.7. GROUND 23

1.6.1 Boards

Fan IN and fan OUT in each board is not a consideration due to the simplicity
of the design. There's not enough inputs and outputs to even come near any
problem.

1.6.2 System Bus

There is a limited number of boards that the Z8 can communicate with since
all the boards has their address decoding enabled at all time.

For the project only 3 boards uses board selection hardware. There are not
enough boards to raise any concern about Fan IN and Fan OUT.

It is possible to enable "Hi Drive" on the Z8 to handle the load. But it is not
used in this project.

1.7 Ground
To reduce noise, special consideration has been given to the design of cabled
connections. Even numbered wires in the cable are grounded and odd numbered
wires are used for signals.

1.8 Distributed CPU power
A design consideration: Where to leave the task of computing the instruc-
tions?

If the largest part of instruction handling lies within the Z8, the Z8 will only
get small instructions to carry out. The Z8 will need to have the full driver of
every board. The Z8 will only send the result of an instruction back to the PC.

Pro:

• Less communication.

• Less PC code.

Con:

• More Z8 code.

• For every new kind of board, the Z8 code needs update.



24 CHAPTER 1. PROBLEM DESCRIPTION

If the largest part of instruction handling lies within the PC, the Z8 will be
used as a "serial to parallel converter". The PC will need to have the full driver
of every board. The Z8 will only receive and send simple port instructions back
and forth to the PC.

Pro:

• Less Z8 code.

• Little or no update of Z8 code for a new board.

Con:

• A lot more communication.

• More PC code.

Conclusion Since the boards use the same addressing routine, and a board
can be either input or output, it has been decided to adopt a design in the
middle of the road.

The Z8 receives only 4 di�erent instructions:

• Single ADC operation

• Addressing a board

• Byte output

• Byte input

An Addressing instruction is normally followed by a Byte In or a Byte Out
instruction.

More of this is described in the protocol section on page 72.

1.9 Decoupling capacitors
For this project all decoupling capacitors has the value of 100 nF of the

ceramic type.



Chapter 2

Speci�cations

2.1 Hardware

2.1.1 General speci�cations

For all the hardware in the system certain criteria has to be met.

• All Boards using 5V, -5V, 12V or 12V regulated power supply.

• Operating temperature: indoor temperature.

2.1.2 Z8

For this project a Z8 Evaluation Board is used. The Z8 must have the following
speci�cations:

• 2 full ports available for digital signal use.

• 2 inputs available for analog signal use.

• Onboard connectors for the Adaptor Board.

The Z8 evaluation board is not a part of the project and not described in detail.
Hardware not a part of the project.

2.1.3 Adaptor Board

The purpose of the Adaptor Board is to make a physical stable connector to the
Bus System.

• Power supplied from the Z8 board.



26 CHAPTER 2. SPECIFICATIONS

2.1.4 Bus system

The purpose of the Bus System is to connect the Adaptor Board with several
Boards.

• Based on a �at cable.

• By turns using signal and ground in the cable wires.

• 16 digital signal wires.

• 1 analog signal wire.

• 25 ground wires.

• 4 voltage supply wires.

• 4 unused wires.

2.1.5 Monitoring and Power Board

The purpose of the Monitoring and Power Board is to monitor signals on
the Address/Data bus and Control bus on the Bus System, and to supply the
external power into the Bus System.

• Input for external Power Supply.

• Monitor the digital signals using LED's.1

2.1.6 Digital Input Board

The purpose of the Digital Input Board is to transfer 8 bit from the input to
the Z8.

• 8 bit Input.

• Galvanic separation using opto couplers.2

2.1.7 Digital Output Board

The purpose of the Digital Output Board is to transfer 8 bit from the Z8 to the
output.

• 8 bit latched outputs.
1A light-emitting diode (LED) is a semiconductor device that emits incoherent monochro-

matic light when electrically biased in the forward direction.
2An opto-isolator/opto-coupler is a device that uses optical techniques to electrically isolate

two related circuits, typically a transmitter and a receiver.



2.2. SOFTWARE 27

2.1.8 Analog Input Board

The purpose of the Analog Input Board is to provide surge protection in the
analog signal and transfer it to the Z8.

• 1 analog input.

• Signal levels: 0 - 2 V

• Surge protection levels: lower than -0.6 V and higher than +5.6 V

2.1.9 Analog Output Board

The purpose of the Analog Output Board is to make an analog signal.

• 1 analog output.

• Signal levels: 0 - 2 V

2.1.10 Power Supply

The Power Supply is donated to the project, and therefor not described in
details.

• 5V regulated.

• -5V regulated.

• 12V regulated.

• -12V regulated.

• Not a part of the project.

2.2 Software

2.2.1 General speci�cations
• GPL license.3

• Inline documentation for Doxygen.4

2.2.2 Z8
• Communication protocol.

3The GNU General Public License is a free software license, created by the Free Software
Foundation, version 2 was released in 1991. It is usually abbreviated to GNU GPL, or, simply,
GPL.

4Doxygen is a documentation system for C++, C, Java, IDL (Corba and Microsoft �avors)
and to some extent Objective-C, PHP, C# and D.



28 CHAPTER 2. SPECIFICATIONS

2.2.3 GUI
• Normal use.

2.2.4 Serial Communication
• Resistant to noise.

2.2.5 3rd. party software
• Bash version 2.x

• KDE version 3.x5

5KDE (K Desktop Environment) is a free desktop environment and development platform
built with Trolltech's Qt toolkit.



Chapter 3

Hardware Block/Module
description

3.1 System overview
The whole system overview.

Figure 3.1: System overview

This project is about the hardware that interfaces a PC together to external
hardware(the real physical world) through RS2321, and the software to operate
the project hardware.

1RS-232 (also referred to as EIA RS-232C or V.24) is a standard for serial binary data
interchange between a DTE (Data terminal equipment) and a DCE (Data communication
equipment).



30 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

Figure 3.2: Detailed system overview

3.1.1 Description

PC The system is operated from a PC. The PC communicate with the project
hardware through a serial connection over RS232 standard. This communication
is bi-directional.

External power supply This external power supply provides power for the
input/output boards and the monitor board. It is not a part of the project.

Z8 This microcontroller receives commands from the PC and executes them
by sending signals to the boards and return the results to the PC if required.
Some commands is followed by address or data, some are not. Not all commands
requires data to be returned.

Adaptor Board This board connects the Z8 with the Bus System/�at cable.
It provides a very stable connection and the possibility to switch o� the bus for
maintenance purpose.

Monitor and Power Board To supply the other boards with power, this
board is connected to external power supplies. The board has LED's showing
the activity on the Address/Data bus and the Control Bus.



3.1. SYSTEM OVERVIEW 31

Analog Input Board This board connects an external analog voltage
through to the Z8 microcontroller with its ADC. The board provide some pro-
tection for surges in the input voltage.

Analog Output Board This board generates a voltage ranging from 0V -
2V. The board is based on a 8-bit DAC.

Digital Input Board This board latches 8 TTL-level inputs through opto
couplers and sends those 8 bit to the Z8 microcontroller, which sends them to
the PC.

Digital Output Board This board sends 8 bit from the Z8 microcontroller
to the the 8 output terminals through a latch.

3.1.2 Calibration of hardware

The calibrated is located in section 3.7.8 on page 62.



32 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

3.2 The Bus System
The purpose of the Bus System is to carry the signals back and forth between

the boards and the Z8.

The cable used is a SCSI2 cable with 50 wires. This cable is chosen because
of the number of wires and availability of tools to add extra connectors on the
cable. The even numbered wires are connected to ground to suppress noise.
The odd numbered wires are connected to signals. All signals are TTL level.

Here's a description of the wires in the �at cable:

Bus System Description
Signal Name
1 AD0
3 AD1
5 AD2
7 AD3
9 AD4
11 AD5
13 AD6
15 AD7
17 Address Enable
19 Function Enable Output
21 Address Decode
23 Deselect Board
25 Function Enable Input
27 - 39 No connection
41 Analog Input
43 +12V
45 -12V
47 +5V
49 -5V
Even pin numbers Ground

Table 3.1: Bus System Description

The signals are split up in groups:

• Address/Data in 8 wires.

• Control bus in 5 wires.

• 4 power supply voltages in 4 wires.
2SCSI stands for "Small Computer System Interface", and is a standard interface for

transferring data between devices on a computer bus.



3.2. THE BUS SYSTEM 33

• 1 analog input in 1 wire.

• Several unused wires.

Each group of connections are also grouped on the cable. The power supply
voltages and analog input are kept in one side of the cable, and the rest in the
other side of the cable to reduce the noise on the cable.



34 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

3.3 Adaptor board

3.3.1 Purpose

The purpose of this Adaptor Board is to connect the bus to the Z8 board.
The need for good and mechanical stable connections is paramount for electrical
stability.

The board had 2 switches for maintenance and testing purpose. It is possible
to switch o� the whole bus to separately test the signals from the Z8 board and
the Rapier hardware.

3.3.2 Photo

Here's a photo of the Adaptor Board.

Figure 3.3: Adaptor Board Photo.



3.3. ADAPTOR BOARD 35

3.3.3 Block diagram

Figure 3.4: Adaptor Board block diagram

3.3.3.1 Description

This board connects the Z8 evaluation board to the Bus System. It does not
process any of the signal it transfers. For maintenance purpose it is possible to
disconnect the signals by switching them o� on the switches.

3.3.4 Bus communication

The Adaptor Board does not perform any processing of any signals. The
default setting of operation is when the switches is on.

3.3.5 Calculations

No calculations is needed for this board. There± no active components on this
board.

3.3.6 Schematics

This is the schematic of the Adaptor Board.



36 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

Figure 3.5: Adaptor Board Schematics.

3.3.7 Partlist

This is the partlist for the Adaptor Board.

Partlist

Exported from ab.sch at 11/28/2004 13:18:58

EAGLE Version 4.11 Copyright (c) 1988-2003 CadSoft

Part Value Device Package Library Sheet

JP1 PINHD-2X25 2X25 pinhead 1
JP2 PINHD-1X30 1X30 pinhead 1
JP3 PINHD-1X30 1X30 pinhead 1
JP4 PINHD-1X30 1X30 pinhead 1
JP5 PINHD-1X30 1X30 pinhead 1
S1 DA08 DA-08 switch-dil 1
S2 DA08 DA-08 switch-dil 1



3.3. ADAPTOR BOARD 37

3.3.8 Test procedures

Procedure:

1. Measure resistance between ground and all the signals and voltage inputs.
Resistance should be in�nite.

2. Do a visual inspection and look for shorts in the wires and soldering work.

3. Connect the board on the Z8 board and test that all pins have levels
according a test program.

Conclusion: The board is working as planned.



38 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

3.4 Monitoring and power board

3.4.1 Purpose

The purpose of this board is to monitor the bus activity and to connect the
other boards to the external power supplies.

Monitoring is done by observing the LED's on the bus.

3.4.2 Photo

Figure 3.6: Monitoring and Power Board Photo.



3.4. MONITORING AND POWER BOARD 39

3.4.3 Block diagram

Figure 3.7: Monitoring and Power Board Block Diagram.

3.4.3.1 Description

The external power supply is connected directly to the bus system. The Driver
and LED array shows what activity there is on the AD bus and the control bus.

3.4.4 Bus communication

The board does not perform any signal processing at all.

3.4.5 Calculations

3.4.5.1 Darlington output

3

UR = 2, 5V (3.1)

UD = 1, 6V (3.2)

UCE = VCE(sat) = 0, 9V (3.3)

IB = 0, 93mA (3.4)
3Darlington refers to a coupling of 2 transistors.



40 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

IR = 10, 0mA (3.5)

R = 250Ω (3.6)

Figure 3.8: Darlington

3.4.6 Schematics of the board

This schematic of the Monitor and Power board.



3.4. MONITORING AND POWER BOARD 41

Figure 3.9: Monitoring and Power Board schematic.

3.4.7 Schematics of the power cable

The schematic is of power cable.

Figure 3.10: Power Cable schematic.



42 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

3.4.8 Partlist
This is the partlist of the Monitor and Power Board.

Partlist

Exported from mpb.sch at 12/22/2004 18:04:07

EAGLE Version 4.11 Copyright (c) 1988-2003 CadSoft

Part Value Device Package Library Sheet

IC1 ULN2803A DIL18 uln-udn 1
IC2 ULN2803A DIL18 uln-udn 1
JP1 PINHD-2X25 2X25 pinhead 1
JP2 PINHD-1X8 1X08 pinhead 1
LED1 LED5MM LED5MM led 1
LED2 LED5MM LED5MM led 1
LED3 LED5MM LED5MM led 1
LED4 LED5MM LED5MM led 1
LED5 LED5MM LED5MM led 1
LED6 LED5MM LED5MM led 1
LED7 LED5MM LED5MM led 1
LED8 LED5MM LED5MM led 1
LED9 LED5MM LED5MM led 1
LED10 LED5MM LED5MM led 1
LED11 LED5MM LED5MM led 1
LED12 LED5MM LED5MM led 1
LED13 LED5MM LED5MM led 1
LED14 LED5MM LED5MM led 1
LED15 LED5MM LED5MM led 1
LED16 LED5MM LED5MM led 1
R1 240 R-EU_0204/2V 0204V rcl 1
R2 240 R-EU_0204/2V 0204V rcl 1
R3 240 R-EU_0204/2V 0204V rcl 1
R4 240 R-EU_0204/2V 0204V rcl 1
R5 240 R-EU_0204/2V 0204V rcl 1
R6 240 R-EU_0204/2V 0204V rcl 1
R7 240 R-EU_0204/2V 0204V rcl 1
R8 240 R-EU_0204/2V 0204V rcl 1
R9 240 R-EU_0204/2V 0204V rcl 1
R10 240 R-EU_0204/2V 0204V rcl 1
R11 240 R-EU_0204/2V 0204V rcl 1
R12 240 R-EU_0204/2V 0204V rcl 1
R13 240 R-EU_0204/2V 0204V rcl 1
R14 240 R-EU_0204/2V 0204V rcl 1
R15 240 R-EU_0204/2V 0204V rcl 1
R16 240 R-EU_0204/2V 0204V rcl 1

3.4.9 Test procedure

Procedure:



3.4. MONITORING AND POWER BOARD 43

1. Measure resistance between ground and all the signals and voltage inputs.
Resistance should be in�nite.

2. Do a visual inspection and look for shorts in the wires and soldering work.

3. Connect the board to the bus system.

4. Connect the board to external power.

5. Observe the LED array for bus activity.

Conclusion: The board is working as planned.



44 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

3.5 Digital Output Board

3.5.1 Purpose

The purpose of this board is to set the TTL level output according to the
byte received from the Z8.

3.5.2 Photo

Photo of the Digital Output Board.

Figure 3.11: Digital Output Board Photo.



3.5. DIGITAL OUTPUT BOARD 45

3.5.3 Block diagram

Figure 3.12: Digital Output Board Block Diagram.

Bus system This is connected to the �at cable.

Address decode This module compare the address with the board id.

Output latch This latch is activated when the proper address is received and
outputs the data received from the Z8 microcontroller.

Output terminals These are output terminals to be connected to external
hardware.

LED array This LED array are for monitoring the output.

3.5.4 Bus communication

Overview of address and control signals to use this board:

1. Address the board

2. Send data to output

3.5.4.1 Adressing a board

Description of signals The tables below are based on TTL-level inputs:

Step The column tells the step in the routine.



46 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

AD bus This column is the 8 bit bus which can hold an adress or data.

Adress Enable This column is a signal from the Z8 micro controller.

Adress Decode This column is a signal from the Z8 micro controller.

Deselect Board This column is a signal from the Z8 micro controller.

State This column shows whether the board is selected or not.

Selecting a board There is only one way to adress a board and that is to
send an adress and decode it.

Selecting a board
Step AD bus Adress Adress Deselect State

Enable Decode Board
1 X 0 0 0 Not selected
2 Valid adress 0 0 0 Not selected
3 Valid adress 1 1 0 Selected
4 Valid adress 0 0 0 Selected
5 X 0 0 0 Selected

Table 3.2: Selecting a board

Explanation First the Z8 send out an adress on the AD-bus. Then the Z8
tells that it is an adress by setting Adress Enable active high. This starts the
adress/id comparing. By sending the Adress Decode the result of adress/id
compare is stored in a �ip-�op. By now the board is selected until a Deselect
Board or decoding of an invalid adress.

Deselecting a board method 1

The fastest way to deselect a board is to select another board. When trying
to decode an invalid adress, the board deselects it self automatically.

Deselecting a board method 1
Step AD bus Adress Adress Deselect State

Enable Decode Board
1 X 0 0 0 Selected
2 Invalid adress 0 0 0 Selected
3 Invalid adress 1 1 0 Not selected
4 Invalid adress 0 0 0 Not selected
5 X 0 0 0 Not selected

Table 3.3: Deselecting a board method 1



3.5. DIGITAL OUTPUT BOARD 47

Explanation When the board try to decode an invalid adress and at the same
time recieves an Adress Decode, the result is stored in the �ip-�op and there by
disabling further board functions.

Deselecting a board method 2

The most obvious way to deselect a board is to deselect all boards in the
system. This can be done by using a function, but it is not used in the Z8 code,
but it is available for future use.

Deselecting a board method 2
Step AD bus Adress Adress Deselect State

Enable Decode Board
1 X 0 0 0 Selected
2 X 0 0 1 Not selected
3 X 0 0 0 Not selected

Table 3.4: Deselecting a board method 2

Explanation A Deselect Board forces the �ip-�op into "not selected" state.

3.5.4.2 Output functions to a board

Description of signals The tables below are based on TTL-level inputs:

Step The column tells the step in the routine.
Board Select State This column tells if the board is selected or not.
AD bus direction Which way is data supposed to �ow.

AD bus data What is on the AD bus.
Output Function Enable Signal from the Z8 to active the board input function, typically a latch.

Output functions to a board
Step Board AD bus Input

Selected Function
State Enable

1 Selected Valid data 0
2 Selected Valid data 0
3 Selected Valid data 1
4 Selected Valid data 0
5 Selected Valid data 0

Table 3.5: Output functions to a board



48 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

Explanation The board uses a second latch to handle data instead of adress.
The data is send forward to, typically, an output terminal or a DAC. When data
is ready on the AD bus, the board recieves an Output Function Enable signal
to enable the second latch.

3.5.5 Calculations

3.5.5.1 8 bit comparator input

VIL = 0.8V (3.7)

UR = 4.2V (3.8)

IR = 0.1mA (3.9)

R =
UR

IR
=

4.2
0.1m

= 42KΩ (3.10)

Figure 3.13: 8 bit comparator input

3.5.5.2 Darlington output

See calculations section 3.4.5.1 on page 39.



3.5. DIGITAL OUTPUT BOARD 49

3.5.6 Schematics

Figure 3.14: Digital Output Board schematic.

3.5.7 Partlist
Partlist

Exported from dob.sch at 12/22/2004 17:49:47

EAGLE Version 4.11 Copyright (c) 1988-2003 CadSoft

Part Value Device Package Library Sheet

C1 100nF C-EU025-024X044 C025-024X044 rcl 1
C2 100nF C-EU025-024X044 C025-024X044 rcl 1
C3 100nF C-EU025-024X044 C025-024X044 rcl 1
C4 100nF C-EU025-024X044 C025-024X044 rcl 1
C5 100nF C-EU025-024X044 C025-024X044 rcl 1
IC1 74LS373N 74LS373N DIL20 74xx-us 1



50 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

IC2 74ALS520N 74ALS520N DIL20 74xx-eu 1
IC3 74S74N 74S74N DIL14 74xx-us 1
IC4 74LS373N 74LS373N DIL20 74xx-us 1
IC5 74LS00N 74LS00N DIL14 74xx-us 1
IC8 ULN2803A DIL18 uln-udn 1
JP1 PINHD-2X25 2X25 pinhead 1
JP2 PINHD-1X10 1X10 pinhead 1
LED1 LED5MM LED5MM led 1
LED2 LED5MM LED5MM led 1
LED3 LED5MM LED5MM led 1
LED4 LED5MM LED5MM led 1
LED5 LED5MM LED5MM led 1
LED6 LED5MM LED5MM led 1
LED7 LED5MM LED5MM led 1
LED8 LED5MM LED5MM led 1
R1 33K R-EU_0207/10 0207/10 rcl 1
R2 33K R-EU_0207/10 0207/10 rcl 1
R3 33K R-EU_0207/10 0207/10 rcl 1
R4 33K R-EU_0207/10 0207/10 rcl 1
R5 33K R-EU_0207/10 0207/10 rcl 1
R6 33K R-EU_0207/10 0207/10 rcl 1
R7 33K R-EU_0207/10 0207/10 rcl 1
R8 33K R-EU_0207/10 0207/10 rcl 1
R9 240 R-EU_0204/7 0204/7 rcl 1
R10 240 R-EU_0204/7 0204/7 rcl 1
R11 240 R-EU_0204/7 0204/7 rcl 1
R12 240 R-EU_0204/7 0204/7 rcl 1
R13 240 R-EU_0204/7 0204/7 rcl 1
R14 240 R-EU_0204/7 0204/7 rcl 1
R15 240 R-EU_0204/7 0204/7 rcl 1
R16 240 R-EU_0204/7 0204/7 rcl 1
S1 DA08 DA-08 switch-dil 1

3.5.8 Test procedures

Procedure:

1. Measure resistance between ground and all the signals and voltage inputs.
Resistance should be in�nite.

2. Do a visual inspection and look for shorts in the wires and soldering work.

3. Connect the board to the bus system.

4. Run the GUI program and test the board by visual inspection of the LED
and match their lights with the setting in the GUI.

Conclusion: The board is working as planned.



3.6. DIGITAL INPUT BOARD 51

3.6 Digital Input Board

3.6.1 Purpose

The purpose of this board is to transfer 8 bit TTL-level inputs to the Z8
microcontroller.

3.6.2 Photo

This is the Digital Input Board.

Figure 3.15: Digital Input Board Photo.



52 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

3.6.3 Block diagram

Figure 3.16: Digital Input Board Block Diagram.

3.6.4 Bus communication

Overview of address and control signals to use this board:

1. Address the board

2. Receive data from input

3.6.4.1 Addressing a board

Please look at section 3.5.4.1 on page 45.

Input functions to a board

3.6.4.2 Input functions to a board

Description of signals The tables below are based on TTL-level inputs:

Step The column tells the step in the routine.

Board Select State This column tells if the board is selected or not.

AD bus direction Which way is data supposed to �ow.

AD bus data What is on the AD bus.



3.6. DIGITAL INPUT BOARD 53

Input Function Enable Signal from the Z8 to active the board input func-
tion, typically a latch.

Input functions to a board
Step Board AD bus AD bus Input

Selected direction Data Function
State Enable

1 True From Z8 Don't care 0
2 True To Z8 Data from 1

input latch
3 True From Z8 Don't care 0

Table 3.6: Input functions to a board

Explanation When the board recieves an Input Function Enable, the board
enables the latch and sends the data back to the Z8 microcontroller. Before
the Input Function Enable is send, the Z8 microcontroller turns the bus from
output mode to input mode. After the Input Function Enable, the Z8 turns
the bus back again to output mode. This is hard coded in the Z8 software to
prevent the board bus output and the Z8 microcontroller output to transmit at
the same time.

3.6.5 Calculations

3.6.5.1 8 bit comparator input

See calculations in section 3.5.5.1 on page 48.

3.6.5.2 Opto coupler output

IF = 10mA (3.11)

IC = 2.5mA (3.12)

VCE(sat) = 0.4V (3.13)

URC
= 4.6V (3.14)

RC =
URC

IC
=

4.6
10m

= 460Ω (3.15)



54 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

Figure 3.17: Opto coupler output



3.6. DIGITAL INPUT BOARD 55

3.6.5.3 Opto coupler input

IF = 10mA (3.16)

VF = 1, 15V (3.17)

Uin = 2.0V (3.18)

UR1 = Uin − VF = 2.0− 1.15 = 0.85V (3.19)

R1 =
UR1

IF
=

0.85
10m

= 85Ω (3.20)

Figure 3.18: Opto coupler input

3.6.5.4 Darlington output

See calculations section 3.4.5.1 on page 39.



56 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

3.6.6 Schematics

Figure 3.19: Digital Input Board schematic.



3.6. DIGITAL INPUT BOARD 57

3.6.7 Partlist
Partlist

Exported from dib.sch at 12/22/2004 17:33:03

EAGLE Version 4.11 Copyright (c) 1988-2003 CadSoft

Part Value Device Package Library Sheet

C1 100nF C-EU025-024X044 C025-024X044 rcl 1
C2 100nF C-EU025-024X044 C025-024X044 rcl 1
C3 100nF C-EU025-024X044 C025-024X044 rcl 1
C4 100nF C-EU025-024X044 C025-024X044 rcl 1
C5 100nF C-EU025-024X044 C025-024X044 rcl 1
C6 100nF C-EU025-024X044 C025-024X044 rcl 1
C7 100nF C-EU025-024X044 C025-024X044 rcl 1
IC1 74LS373N 74LS373N DIL20 74xx-us 1
IC2 74ALS520N 74ALS520N DIL20 74xx-eu 1
IC3 74LS74N 74LS74N DIL14 74xx-us 1
IC4 74LS373N 74LS373N DIL20 74xx-us 1
IC5 74LS00N 74LS00N DIL14 74xx-us 1
IC6 74LS04N 74LS04N DIL14 74xx-eu 1
IC7 74LS04N 74LS04N DIL14 74xx-eu 1
JP1 PINHD-2X25 2X25 pinhead 1
JP2 PINHD-1X10 1X10 pinhead 1
OK1 CNY17 CNY17 DIL06 optocoupler 1
OK2 CNY17 CNY17 DIL06 optocoupler 1
OK3 CNY17 CNY17 DIL06 optocoupler 1
OK4 CNY17 CNY17 DIL06 optocoupler 1
OK5 CNY17 CNY17 DIL06 optocoupler 1
OK6 CNY17 CNY17 DIL06 optocoupler 1
OK7 CNY17 CNY17 DIL06 optocoupler 1
OK8 CNY17 CNY17 DIL06 optocoupler 1
R1 33K R-EU_0207/10 0207/10 rcl 1
R2 33K R-EU_0207/10 0207/10 rcl 1
R3 33K R-EU_0207/10 0207/10 rcl 1
R4 33K R-EU_0207/10 0207/10 rcl 1
R5 33K R-EU_0207/10 0207/10 rcl 1
R6 33K R-EU_0207/10 0207/10 rcl 1
R7 33K R-EU_0207/10 0207/10 rcl 1
R8 33K R-EU_0207/10 0207/10 rcl 1
R17 82 Ohm R-EU_0204/2V 0204V rcl 1
R18 82 Ohm R-EU_0204/2V 0204V rcl 1
R19 82 Ohm R-EU_0204/2V 0204V rcl 1
R20 82 Ohm R-EU_0204/2V 0204V rcl 1
R21 82 Ohm R-EU_0204/2V 0204V rcl 1
R22 82 Ohm R-EU_0204/2V 0204V rcl 1
R23 82 Ohm R-EU_0204/2V 0204V rcl 1
R24 82 Ohm R-EU_0204/2V 0204V rcl 1
R25 470 Ohm R-EU_0204/2V 0204V rcl 1
R26 470 Ohm R-EU_0204/2V 0204V rcl 1
R27 470 Ohm R-EU_0204/2V 0204V rcl 1
R28 470 Ohm R-EU_0204/2V 0204V rcl 1



58 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

R29 470 Ohm R-EU_0204/2V 0204V rcl 1
R30 470 Ohm R-EU_0204/2V 0204V rcl 1
R31 470 Ohm R-EU_0204/2V 0204V rcl 1
R32 470 Ohm R-EU_0204/2V 0204V rcl 1
S1 DA08 DA-08 switch-dil 1

3.6.8 Test procedure

Procedure:

1. Measure resistance between ground and all the signals and voltage inputs.
Resistance should be in�nite.

2. Do a visual inspection and look for shorts in the wires and soldering work.

3. Connect the board to the bus system.

4. Connect the board inputs to an 8 bit signal source.

5. Run the GUI and observe the inputs in GUI window and compare the
result with the signal input.

Conclusion: The board is working as planned.



3.7. ANALOG OUTPUT BOARD 59

3.7 Analog Output Board

3.7.1 Purpose

The purpose of this board is to generate an analog voltage through a 8 bit
DAC. The byte is received from the Z8 microcontroller in a latch, and used as
input in the DAC.

3.7.2 Photo

This is the Analog Output Board.

Figure 3.20: Analog Output Board Photo.



60 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

3.7.3 Block diagram

Figure 3.21: Analog Output Board block diagram.

3.7.4 Bus communication

Overview of address and control signals to use this board:

1. Address the board

2. Send data to output

3.7.4.1 Addressing a board

Please look at section 3.5.4.1 on page 45.

3.7.4.2 Output functions to a board

Please look at section 3.5.4.2 on page 47.

3.7.5 Calculations

3.7.5.1 8 bit comparator input

See calculations in section 3.5.5.1 on page 48.

3.7.5.2 Digital to analog converter

R1 and R2 are based on values set in the Application Note. The Application
Note suggests the resistor value to be 5KΩ, low tolerence. The value of R1 is
4.7KΩ and R2 is 1KΩ. R1 is a trim. pot. because the value can not be easily
calculated.

Look at page 62 for calibration procedure.



3.7. ANALOG OUTPUT BOARD 61

Each resistor is a part in a current loop.

3.7.6 Schematics

Figure 3.22: Analog Output Board schematic.

3.7.7 Partlist
Partlist

Exported from aob.sch at 12/22/2004 17:29:24

EAGLE Version 4.11 Copyright (c) 1988-2003 CadSoft

Part Value Device Package Library Sheet

C1 100nF C-EU050-024X044 C050-024X044 rcl 1
C2 100nF C-EU025-024X044 C025-024X044 rcl 1
C3 100nF C-EU025-024X044 C025-024X044 rcl 1



62 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

C4 100nF C-EU025-024X044 C025-024X044 rcl 1
C5 100nF C-EU025-024X044 C025-024X044 rcl 1
C6 100nF C-EU025-024X044 C025-024X044 rcl 1
C7 100nF C-EU025-024X044 C025-024X044 rcl 1
C8 100nF C-EU025-024X044 C025-024X044 rcl 1
C9 100nF C-EU025-024X044 C025-024X044 rcl 1
IC1 TL072P TL072P DIL08 linear 1
IC3 74LS373N 74LS373N DIL20 74xx-us 1
IC4 74ALS520N 74ALS520N DIL20 74xx-eu 1
IC5 74LS74N 74LS74N DIL14 74xx-eu 1
IC6 74LS00N 74LS00N DIL14 74xx-us 1
IC7 74LS373N 74LS373N DIL20 74xx-us 1
IC8 DAC0808N DAC0800N DIL16 linear 1
JP1 PINHD-2X25 2X25 pinhead 1
JP2 PINHD-1X2 1X02 pinhead 1
R1 4K7 R-EU_0204/7 0204/7 rcl 1
R2 1K TRIM_EU-B25P B25P pot 1
R6 33K R-EU_0204/7 0204/7 rcl 1
R7 33K R-EU_0204/7 0204/7 rcl 1
R8 33K R-EU_0204/7 0204/7 rcl 1
R9 33K R-EU_0204/7 0204/7 rcl 1
R10 33K R-EU_0204/7 0204/7 rcl 1
R11 33K R-EU_0204/7 0204/7 rcl 1
R12 33K R-EU_0204/7 0204/7 rcl 1
R13 33K R-EU_0204/7 0204/7 rcl 1
S1 DA08 DA-08 switch-dil 1

3.7.8 Calibration procedures

To calibrate the output, send hex value "�" to the board, and adjust the
output voltage output to 2 V by trimming R2.

3.7.9 Test procedures

Procedure:

1. Measure resistance between ground and all the signals and voltage inputs.
Resistance should be in�nite.

2. Do a visual inspection and look for shorts in the wires and soldering work.

3. Connect the board to the bus system.

4. Run the GUI program and test the board output with a voltmeter and
match value with the voltage set in the GUI.

5. Observe the LED array for bus activity.

Conclusion: The board is working as planned.



3.8. ANALOG INPUT BOARD 63

3.8 Analog Input Board

3.8.1 Purpose

The purpose of this board is to connect an analog input pin on the Z8 to the
Analog Input Board terminal through a surge protection.

The Z8 microcontroller performs an ADC operation on the analog voltage
and returns the result to the PC.

3.8.2 Photo

This is the Analog Input Board.

Figure 3.23: Analog Input Board Photo.



64 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION

3.8.3 Block diagram

Figure 3.24: Analog Input Board block diagram.

3.8.4 Bus communication

This board does not perform any signal processing.

3.8.5 Calculations

No calculations is made for this board.

3.8.6 Schematics

Figure 3.25: Analog Input Board schematic.



3.8. ANALOG INPUT BOARD 65

3.8.7 Partlist
Partlist

Exported from aib.sch at 12/22/2004 14:24:09

EAGLE Version 4.11 Copyright (c) 1988-2003 CadSoft

Part Value Device Package Library Sheet

D1 1N4148 1N4148 DO35-10 diode 1
D2 1N4148 1N4148 DO35-10 diode 1
JP1 PINHD-2X25 2X25 pinhead 1
JP2 PINHD-1X2 1X02 pinhead 1

3.8.8 Test procedures

Procedure:

1. Measure resistance between ground and all the signals and voltage inputs.
Resistance should be in�nite.

2. Do a visual inspection and look for shorts in the wires and soldering work.

3. Connect the board to the bus system.

4. Run the GUI program and test the board with a voltage on the input and
match value with the voltage read in the GUI.

Conclusion: The board is working as planned.



66 CHAPTER 3. HARDWARE BLOCK/MODULE DESCRIPTION



Chapter 4

Software Block/Module
description



68 CHAPTER 4. SOFTWARE BLOCK/MODULE DESCRIPTION

4.1 Overview
The Rapier software is divided into three parts:

1. GUI on a PC.

2. Embedded code in a microcontroller.

3. Protocol for instructions.

It is important to understand the relationship between the software parts and
the hardware parts. Look at this illustration of the relationship.

Figure 4.1: Hardware and software block diagram.

Explanation The di�erent colors used in this illustration signi�es its type
and relation to the project:

Yellow boxes are software components written for this project.

Red boxes are software and hardware components used, but not designed or build for
this project.

Blue boxes are hardware components designed and build for this project.

Yellow arrows are software accessing hardware in a process described in this project.

Brown arrow are communication not described in this project.

Blue arrow are serial communication RS232. This protocol is not described in the
project.



4.1. OVERVIEW 69

Green arrows are parallel communication described in this project.

Red arrows are power supply to the hardware in this project.



70 CHAPTER 4. SOFTWARE BLOCK/MODULE DESCRIPTION

4.1.1 Rapier software communication

The next illustration shows the path between the two parts through which
they communicate.

Figure 4.2: Rapier software communication diagram.



4.1. OVERVIEW 71

4.1.2 Rapier command path

To understand the way instructions �ow in the system look at the illustration
below:

Figure 4.3: Rapier command path diagram.



72 CHAPTER 4. SOFTWARE BLOCK/MODULE DESCRIPTION

4.2 Rapier Protocol
1

4.2.1 Overview

This protocol is designed to be as simple, yet �exible to use. The protocol
meets the following criteria:

1. Easy to distinguish between data and instruction.

2. Easy to emulate the GUI through a terminal program like Hyperterminal
in Windows or Minicom in Linux.

With these criteria in mind, it was decided to split data bytes up into 2 nibbles
by using hex numbers (0-9 and a-f). The rest of the letters and/or ASCII2
characters could be used as instructions. But the primary concern was that
each instruction and/or data should be reproduced from a terminal application
for testing and development purpose.

4.2.2 Data

Data is normally organized in bytes. But since it is next to impossible to
enter or display every ASCII character in a terminal program in a way that
makes sense, this method of using data in sizes of bytes is not easy applicable.
But if the data is split up in nibbles or in hex values, it will make more sense
in a terminal program.

The data is then represented as hex numbers 0-9 or a-f. The downside is
that a byte has grown to 2 hex numbers in characters which means 2 ASCII
characters or 2 bytes. But it make it possible to enter and display in a terminal
program in Windows or Linux.

4.2.3 Instructions

The characters left for instructions are the rest of the ASCII table. Only 4
of them are used in the Z8 code. Instructions are only 1 byte long, but could
easily be longer if the need should arise in the future. The Z8 code would have
to be considerably expanded for that use.

1In computing, a protocol is a convention or standard that controls or enables the connec-
tion, communication, and data transfer between two computing endpoints. Protocols may be
implemented by hardware, software, or a combination of the two.

2ASCII (American Standard Code for Information Interchange), generally pronounced
'aski', is a character set and a character encoding based on the Roman alphabet as used
in modern English and other Western European languages.



4.2. RAPIER PROTOCOL 73

4.2.4 Protocol in use

The protocol in use in this project is shown in the following table:

Protocol in use
ASCII character Description
0 Value 0
1 Value 1
2 Value 2
3 Value 3
4 Value 4
5 Value 5
6 Value 6
7 Value 7
8 Value 8
9 Value 9
a Value 10
b Value 11
c Value 12
d Value 13
e Value 14
f Value 15
k AD conversion
s Addressing operation
i Input operation
o Output operation
x Operation completed

Table 4.1: Protocol in use

4.2.5 Sending instructions or data

Instruction and/or data are combined in the following ways:

k = is a stand alone instruction.

s = is followed by an address in hex format.

i = returns the result in hex format.

o = is followed by a data byte in hex format.

All replies from the Z8 is followed by a "x" and a \n(newline) as an "end of
message" character to tell the PC that this was the end of the transmission.
The \n is appended in order for the terminal program to understand that a
transmission is ended. This \n is easily disregarded in the GetInput() in the
GUI software.



74 CHAPTER 4. SOFTWARE BLOCK/MODULE DESCRIPTION

If the Z8 does not receive one of the 4 characters, it just restarts the "while
loop" and sends \n back to the PC.

4.2.5.1 Example 1

In this example the user clicks on the "Update Input Voltage" on the GUI
window.

• The GUI sends a "k" to the Z8.

• The Z8 performs an AD conversion and prepares the result. For example
the hex value "4a".

• The Z8 appends a "x" and a \n to the result.

• The Z8 sends the result: "4ax\n"
• The GUI evaluates and calculates the result and display it in the GUI

window.

• The GUI appends the result string in the communication log in the GUI
window.

4.2.5.2 Example 2

In this example the user enters a new value in the "Output Voltage" on the
GUI window. Let the new voltage has the hex value "c2" and the board id is
02.

• The GUI sends fx. a "s02oc2" to the Z8.

• The Z8 decodes the address in "s02" and sends "x\n" in reply.

• The Z8 decodes the data to the output board in "0c2" and sends "x\n"
in reply.

• The Z8 outputs the data "c2" to the Analog Output Board.

• The GUI appends the "x" received twice in the communication log in the
GUI window.

4.2.5.3 Example 3

In this example the user clicks on the "Update Digital Input" on the GUI
window.Let the board id be 04 and the result be 81.

• The GUI sends fx. a "s04i" to the Z8.

• The Z8 decodes the address in "s04" and sends "x\n" in reply.

• The Z8 decodes the instruction and fetch the data from the input board
and sends "81x\n" in reply.



4.2. RAPIER PROTOCOL 75

• The GUI evaluates the result and display it in the GUI window with the
�rst and last radiobutton set according the value 81 in binary: 10000001.

• The GUI appends the received string "81x" in the communication log in
the GUI window.



76 CHAPTER 4. SOFTWARE BLOCK/MODULE DESCRIPTION

4.3 GUI software
3

The GUI is written in C++ and uses the QT graphical library. This gives
a window which is looking like all other windows in Linux running the KDE
window manager.

To fully understand the GUI software, it is important to know that the GUI
is event-driven based on user input. It does nothing on its own. Every time a
graphical widget is clicked or interacted with, it emits a "signal". These signals
are connected to "slots"4. A slot is a kind of functions. A widget can generate
more than one signal, and many widgets can connect to a single slot.

The way a GUI is developed in C++ and QT, is by �rst drawing the window
with all its widgets(ie buttons, text boxes, spinboxes etc), and later �ll in the
C++ code to make the slots do something.

This is an overview of the GUI:
3A graphical user interface (or GUI, pronounced "gooey") is a method of interacting with

a computer through a metaphor of direct manipulation of graphical images and widgets in
addition to text.

4Signals and slots are used for communication between objects. The signal/slot mechanism
is a central feature of Qt and probably the part that di�ers most from other toolkits.



4.3. GUI SOFTWARE 77

Figure 4.4: Rapier GUI.

For a detailed description of how to use the GUI or understand its layout,
please read the users manual starting on page 113.

4.3.1 Main

Nothing exists without a main function. From "main" is the graphical part
started up.

4.3.2 Slots

There are 11 slots in the GUI, 8 of them receiving signals from several widgets
in the GUI.

The slots can be divided into the following groups:

• Slots responsible for serial port handling.

• Slots responsible for interaction with the user, sending instructions to the
Rapier hardware and receiving/interpretate the results and present it in
the GUI.



78 CHAPTER 4. SOFTWARE BLOCK/MODULE DESCRIPTION

4.3.2.1 Port handling

The serial port on a Linux computer is handled allmost the same way as a
�le. Everything in a Linux/Unix computer system is �les. Even directories
are �les. All hardware devices are �les, the kernel loaded in the RAM is a
�le. This means that it's the same method you use to access everything in the
computer, but with small modi�cations. When you open a serial port, typically
called /dev/ttyS0, you also set up speed and other properties related to serial
communication. That part is hard coded into the GUI.

The 4 slots/functions responsible for handling the serial port are:

1. OpenPort()

2. Closeport()

3. WritePort()

4. ReadPort()

4.3.2.2 User interface

The slots responsible for interaction with the user and responsible for sending
instructions conforming to protocol:

1. GetInput()

2. UpdateAnalogInput()

3. UpdateAnalogOutput()

4. UpdateDigitalInput()

5. UpdateDigitalOutput()

4.3.2.3 Operating system speci�c functions

These slots are essential to the operating system.

1. init()

2. destroy()

4.3.2.4 Connections

The relationship between widgets sending signals to various slots/functions is
shown below.



4.3. GUI SOFTWARE 79

Figure 4.5: Rapier GUI connections.

4.3.3 Examples of use

4.3.3.1 Updating a board id

If the user wants to update a board id, the user enters the new board id into
the relevant �eld and clicks on "update board id". For example:

Figure 4.6: Updating board id.

The GUI program reacts to the change by doing this:

1. When the button is clicked it emits a signal to a slot.

2. The slot, which is a function, executes by saving the new board id in a
string format in a global variable for later use.

4.3.3.2 Changing the output voltage

If the user wants to update the analog output board voltage, the user either
enters a voltage in numbers or clicks on the up arrow or down arrow on the
spinbox. For example:

Figure 4.7: Updating output voltage.

The GUI program reacts to the change by doing this:



80 CHAPTER 4. SOFTWARE BLOCK/MODULE DESCRIPTION

1. On change of value, the widget emits a signal to UpdateAnalogOutput().

2. This slot/function builds up a string based on board id and the value in
the changed widget.

3. UpdateAnalogOutput() sends the string by calling GetInput().

4.3.3.3 Updating the input voltage

If the user wants to update the analog input board voltage, the user clicks
update input button. For example:

Figure 4.8: Updating input voltage.

The GUI program reacts to the click by doing this:

1. The widget emits a signal to the UpdateAnalogInput() slot.

2. UpdateAnalogInput() sends a string to the Z8 hardware by calling Get-
Input().

3. GetInput returns the result from the Z8 hardware.

4. UpdateAnalogInput() converts the returned string into a �oat.

5. UpdateAnalogInput() presents the new value in the GUI (the picture
above).



4.4. Z8 SOFTWARE 81

4.4 Z8 software

4.4.1 Overview

The Z8 code is much simpler than the GUI code. The code performs a simple
task of listening to the serial port, evaluate the serial inputs, sending instructions
to the Rapier hardware, and returning the result to the PC.

This illustration describes the �ow of the Z8 code:

����� ��� �
	
�����
� ���
���������
��� ��������	 �

��� � � 	 �����
� ����	 ����� �

� ��� � � ��� � ! �

�#"�� � �$� ���
�

����� ��� �
	�� ����%��

��&�'(�
�����
	 )�� �
� ���
����	 ��)�%�� ��� ����'

����� ��� �
	*����	 ��)+) ���
	 ��)()�� "���������	 �

,-���.�����
��� 	 �
�/������	 � ���
����	 ��)�%�� ��� ����'

� ����%��1032 4+2

� ����%��1032 )�2

� ����%��1032 � 2

� ����%��1032 �
2

Figure 4.9: Z8 code overview.

This �ow diagram describes the main.c, but this will be described in more
details in another chapter.

The code is separated into 2 parts:

main.c which takes care of the overall purpose of the Z8 code.

driver.c which takes care of communication with the Rapier hardware.



82 CHAPTER 4. SOFTWARE BLOCK/MODULE DESCRIPTION

4.4.2 main.c

main.c is the main function responsible for the overall functionality of the Z8.
It runs in an endless while-loop. In each loop the main() listens for input on the
serial port and performs di�erent tasks depending of the received characters.

The main function can 4 di�erent actions:

1. Receiving a "k", the Z8 performs an AD conversion and sends the result
to the PC.

2. Receiving a "s", the Z8 waits for 2 bytes long address and performs an
addressing operation.

3. Receiving a "i", the Z8 performs an input operation from a board and
sends the result to the PC.

4. Receiving a "o", the Z8 waits for 2 bytes long data and performs an output
operation to a board.

If the Z8 receives a character other than the 4 mentioned above, it exits its
current operation and restarts the while-loop.

4.4.3 driver.c

Driver.c is the �le with all low level functions concerning the functionality of
the Rapier Hardware.

The functions are grouped into categories:

• Low level functions.

• Mid level functions.

• High level functions.

The three levels are described on the next pages.



4.4. Z8 SOFTWARE 83

4.4.3.1 Low level functions

These functions are directly responsible for ADC operations in the Z8, putting
data on the Z8 port, which include the AD bus and the Control bus.

Low level functions
Function Description
void adbusoutput(char c) Sets the AD bus with a byte value.
void adress_enable_on( ) Sets the Address Enable high.
void adress_enable_o�( ) Sets the Address Enable low.
void adress_decode_on( ) Sets the Address Decode high.
void adress_decode_o�( ) Sets the Address Decode low.
void output_function_enable_on( ) Sets the Output Function Enable high.
void output_function_enable_o�( ) Sets the Output Function Enable low.
void input_function_enable_on( ) Sets the Input Function Enable high.
void input_function_enable_o�( ) Sets the Input Function Enable low.
void deselect_board_on( ) Sets the Deselect Board high.
void deselect_board_o�( ) Sets the Deselect Board low.
void setadcinputs( ) Sets up the ADC.
void setadbustoinput( ) Sets the AD bus to input mode.
void setadbustooutput( ) Sets the AD bus to output mode.
void bussetup( ) Sets up Z8 ports E and G for use.

Table 4.2: Low level functions



84 CHAPTER 4. SOFTWARE BLOCK/MODULE DESCRIPTION

4.4.3.2 Mid level functions

These functions calls the low level functions in organized routines to handle
all the instructions described in the Rapier protocol.

The functions are:

Mid level functions
Function Description
void adressingboard(char id) Addresses a board with the id argument.
void byteout(char data) Sends the data to the selected boards.
char bytein() Receives a byte from selected board.
char singleadconverting() Performs a single AD conversion.

Table 4.3: Mid level functions



4.4. Z8 SOFTWARE 85

4.4.3.3 High level functions

The high level functions was only used during delevopment.

High level functions
Function Description
void dob(char id, char data) Performs a full addressing and output

to a Digital Output Board.
char dib(char id) Performs a full addressing and input to a

Digital Input Board.
void aob(char id, char data) Performs a full addressing and output to

a Analog Output Board. This function is
basicelly the same as the dob() function
but the name was kept for name sake.

char aib( ) Performs an AD conversion like the
mid level function singleadconverting( ),
but is kept for future use when more
analog inputs is added.

Table 4.4: High level functions

For a more detailed description of the functions, look into the appendix on
page 129



86 CHAPTER 4. SOFTWARE BLOCK/MODULE DESCRIPTION

4.5 Project �le management
For this project, there was a need for a tool to manage all the �les with

schematics, diagrams, photos, latex �les.

The program requires Bash5 and dialog6.

This kind of user interface was chosen because for this kind of system adminis-
trative jobs, a graphical interface is not needed. A text interface/command line
interface is often faster to work with than working with a mouse. A program
based on a script rather than a compiled executable program is more �exible
when it comes to day to day editing and addition of new functionality.

The design philosophy was to automate as many tasks as possible since many
of the tasks takes a lot of time. For daily use, the program is started and
left alone for about 20 minutes and after that everything is updated in the
documentation and the homepage.

4.5.1 Example 1 - a schematic is updated

If a schematic is updated, the user saves the schematic as a bitmap pictures
in EPS format and updates the partlist. The management program copies the
partlist into the documentation and converts the bitmap picture into EPS for
the documentation and JPG for the homepage and places all the new �les in
the right places.

When uploading the documentation and homepage, only the �les changed is
uploaded to save time and network load.

4.5.2 Example 2 - a html �le is updated

If a html/php �le is updated, the management program uploads only the
changed �les.

4.5.3 Functionality

On the next page is a short review of the functionality of the program.
5Bash is a UNIX command shell written for the GNU project. Its name is an acronym

for Bourne-again shell - a pun on the Bourne shell (sh), which was an early, important UNIX
shell.

6Dialog is a program that will let you to present a variety of questions or display messages
using dialog boxes from a shell script.



4.5. PROJECT FILE MANAGEMENT 87

Rapierproject menu and functions
Menu item Description
Change upload target To either sourceforge.net or local.
Everything Do everything. Takes a very long time.
DocumentationUploadBackup Updates documentation,

upload documentation, backup everything.
Illustrations Update all illustrations.
Illustrations->Photos Update photos into docs and html.
Illustrations->Schematics Update schematics into docs and html.
Illustrations->CircuitDescriptions Update circuit description

schematics into docs
Illustrations->Calculations Update Calculation

Illustrations into docs.
Illustrations->BlockDiagrams Update Block Diagrams into docs.
Documentation All jobs on documentation.
Documentation->Partlists Copy partlists into

documentation(latex).
Documentation->Tar Latex Creates a tar ball of latex.
Documentation->Latex Compile Latex.
Documentation->DVI->PDF Compile latex to PDF.
Documentation->Online Build Online Documentation from PDF.
Documentation->Z8Code Updating Z8 code documentation
Documentation->GUICode Updating GUI code documentation
SourceCode All jobs on Source Code.
SourceCode->Z8 Z8 Source Code.
SourceCode->GUI GUI Source Code.
Tools All jobs on tools.
Tools->Rapierproject Collects Rapier Project software
Tools->itctools Collects itcutils software
Tools->LatexTools Collects latex tools software
Upload All upload jobs.
Upload->HTML Upload html to sourceforge.net.
Upload->Online Documentation Upload Online Documentation

to sourceforge.net.
Upload->Latex Documentation Upload Latex Documentation

to sourceforge.net.
Upload->PDF Documentation Upload PDF Documentation

to sourceforge.net.
Upload->Tools Upload tools to sourceforge.net.
Upload->SourceCode Upload Source Code

to sourceforge.net.
Upload->ApplicationNotes Upload Application Notes

to sourceforge.net.
Backup All backup jobs.
Backup->Software Backup all software.
Backup->Source Forge Backup Source Forge.
Backup->Documentation Backup Documentation.
Backup->Hardware Backup Hardware.
Backup->Management Backup Management.
Backup->Tools Backup Tools.

Table 4.5: Ports and busses



88 CHAPTER 4. SOFTWARE BLOCK/MODULE DESCRIPTION

4.5.4 The interface

This is the console/text based interface. The program is operated by using
the keyboard.

Figure 4.10: Rapier project �le management system.

4.5.5 Source code

Turn to page 156 to se the source code.



Chapter 5

System integration

5.1 Development

5.1.1 Resources of help

Help was found in application notes, in the many advice's from my tutor, on
SSLUG 1 email list for Linux programming and countless searches in Google.

5.1.2 Project �les management

During the early stages of the development, the need for a project �le man-
agement system became obvious. For the endless updates of �les which should
be copied into the documentation and homepage, daily backups and uploads to
the web server through scp 2, a program was needed to do those tasks without
user intervention, entering password and not uploading unchanged �les.

All this led to the programming of the program named rapierproject. But it
can easily be adapted to another project for later use. This program has saved
a lot of time and worrying of relevant �le update. The program was written in
bash shell script.3

5.1.3 Software tools

Many programs was used in the development of this project:

Z8 Encore is the Integrated Delevopment Environment running in Windows.

Kile for writting this documentation.4
1Skåne Sjælland Linux User Group
2secure copy based on secure shell(ssh)
3BASH shell script are a language used in Linux, Unix and Mac OS X.
4Kile is a LATEX2εfront-end.



90 CHAPTER 5. SYSTEM INTEGRATION

Eagle for drawing all electronic schematics.

QT-designer for designing the GUI.

GCC for compiling the GUI code.

Itctools which was once written. Used for backup and RSA key distribution.

Rapierproject for managing the project �les.

OpenO�ce.org an o�ce suite used for drawing illustrations.

Planner for project management.

Firefox browser for searching on Google.

Thunderbird email client for the SSLUG mailing list.

Umbrello for UML illustrations.

Countless utilities for small tasks on my Linux laptop.



5.2. CONNECTING THE HARDWARE 91

5.2 Connecting the hardware
Follow this procedure to connect the hardware:

• Put the Adaptor Board on the Z8 evaluation board.

• Stack up the boards. Preferable with the Monitor and Power board on
top.

• Connect the �at cable to the stack of boards.

• Connect the �at cable to the Adaptor Board.

• Connect the serial cable to the Z8 evaluation board and the PC.

• Connect the power cable to the Monitoring and Power Board and the
external power supplies.

• Connect the power adaptor to the Z8 evaluation board.

• Turn on power to all devices.

• When the PC has �nished booting start up the Rapier GUI.

• Connect the relevant board to relevant input signals generators/simula-
tors, or connect the analog output to the analog input and the 8 digital
outputs to the 8 digital inputs.

• The system is ready for use.

The following tests are based on the premise that all the outputs are looped
back to the inputs in a sort of self diagnostic mode. Look at the picture below.



92 CHAPTER 5. SYSTEM INTEGRATION

Figure 5.1: Loop back for testing purpose.



5.3. LINEARITY PROBLEMS 93

5.3 Linearity problems
Through the days of tests and documentation, a problem with linearity was

discovered. To explorer this problem, the boards was tested in the range of
voltage from 0 V to 2 V in steps of 100 mV. The values tested:

Figure 5.2: Optimal linearity.

This is the optimal linearity.

Output linearity This is the measured output:

Figure 5.3: Output linearity.

This is not linear.



94 CHAPTER 5. SYSTEM INTEGRATION

Output linearity This is the measured input:

Figure 5.4: Input linearity.

This is not linear.

Output linearity This is the combined linearity:

Figure 5.5: Overall linearity.

This is still not linear, but a little better because the 2 non-linearities com-
bined works in opposite direction and works for the better.

This poor linearity is not explained in the application notes of the components
used. But here is a lots of possible reasons:



5.3. LINEARITY PROBLEMS 95

1. A bad component.

2. In�uence from external components and parts.

3. Bad test equipment.



96 CHAPTER 5. SYSTEM INTEGRATION

5.4 Tests

5.4.1 Testing the hardware from a terminal program

Easy testing The best and easiest way of testing the hardware, is to connect
all the hardware to the PC and run either the GUI or a terminal program. On
Linux run the program minicom.5

Figure 5.6: Starting minicom.

Screen output The output will show something like this:
5http://alioth.debian.org/projects/minicom/



5.4. TESTS 97

Figure 5.7: Minicom after start.

Test procedure If the inputs and output are connected in a loop back mode,
perform the following test:

5.4.1.1 Adaptor Board operation test

The Adaptor Board does not perform any tasks or signal processing. Individ-
ual testing not possible with the standard software.

5.4.1.2 Monitor and Power Board operation test

The Adaptor Board does not perform any tasks or signal processing. Individ-
ual testing not possible with the standard software.



98 CHAPTER 5. SYSTEM INTEGRATION

5.4.1.3 Digital Output Board operation test

To test this board do the following:

Address the board The board id is hex value 02. To address the board in
minicom enter: "s02".

The hardware respond with "x". Not much to look at, but the "x" is impor-
tant because it's the right response.

Send a byte to the board To write a byte, fx. hex value �, to the board,
send "o�".

The hardware respond with "x" again. The "x" is still the right response.
But on the Digital Output Board, all the LED6 is turned on. Other hex values
can be written to the board and the LED should turn on corresponding to the
binary pattern in the hex value.

The output will show something like this:

Figure 5.8: Minicom after addressing a board.
6Light Emitting Diode



5.4. TESTS 99

Partly conclusion The Digital Output Board is working properly as de-
signed.



100 CHAPTER 5. SYSTEM INTEGRATION

5.4.1.4 Digital Input Board operation test

To test this board do the following:

Address the board The board id is hex value 04. To address the board in
minicom enter: "s04".

The hardware respond with "x", which is the right response.

Getting the input Send "i" in minicom and see the response:

The output will show something like this:

Figure 5.9: minicom after start.

The response is "�x", which means that "�" is whats on the input, and the
"x" is the end response from the Z8 hardware.

Partly conclusion The input received match the output send earlier. When
trying sending other values to the output board, the same values are received
on the input board. The Digital Input Board is working properly as designed.



5.4. TESTS 101

5.4.1.5 Analog Output Board operation test

This test is based on the fact that the board is calibrated properly according
to section 3.7.8 on page 62.

Test equipment To test the output connect an volt meter to the output.
Expect to measure a voltage of 2 V when sending the value to the board. It
should look something like this:

Figure 5.10: Analog output.

Addressing the board The board id is hex value 08. To address the board
in minicom enter: "s08".

The hardware respond with "x" which is the right response.

Sending the output To write a byte, fx. hex value �, to the board, send
"o�".

The hardware respond with "x" and sets the output voltage to 2 v.

Partly conclusion The Analog Output Board is working properly.



102 CHAPTER 5. SYSTEM INTEGRATION

5.4.1.6 Analog Input Board operation test

To test this board do the following:

Address the board The board does not have an id because all functionality
is moved inside the Z8 microcontroller.

AD conversion Send "k" in minicom and see the response:

The output will show something like this:

Figure 5.11: Performing AD conversion.

The response is "fdx". The response may vary because of the analog nature of
the function. There can be noise in the moment of AD conversion, the linearity
of the ADC7.

Partly conclusion The input received match the output send earlier. When
trying sending other values to the output board, the same values are received on
the input board. The Digital Input Board and the Z8 ADC circuitry is working.

7Analog to Digital Converter



5.4. TESTS 103

5.4.2 Testing the hardware from the GUI

Easy testing For this test of the hardware, connect all the hardware to the
PC and run the GUI or a terminal program. For a more detailed description of
using the GUI, goto the Users Manual starting on page 113.

Test procedure If the inputs and output are connected in a loop back mode,
perform the following test:

5.4.2.1 Adaptor Board operation test

The Adaptor Board does not perform any tasks or signal processing. Individ-
ual testing not possible with the standard software.

5.4.2.2 Monitor and Power Board operation test

The Adaptor Board does not perform any tasks or signal processing. Individ-
ual testing not possible with the standard software.



104 CHAPTER 5. SYSTEM INTEGRATION

5.4.2.3 Digital Output Board operation test

To test this board do the following:

Click on one of the 8 radiobuttons in the GUI to activate the output.

The communication log should show the same response as minicom. Observe
the output LED's and match them turning on or o� matching the input in the
GUI.

Partly conclusion The Digital Output Board and GUI is working properly.



5.4. TESTS 105

5.4.2.4 Digital Input Board operation test

To test this board do the following:

After setting the output on the Digital Output Board, match the input and
output in GUI.

Partly conclusion The input match the output. The Digital Input Board
and GUI is working properly.



106 CHAPTER 5. SYSTEM INTEGRATION

5.4.2.5 Analog Output Board operation test

This test is based on the fact that the board is calibrated properly according
to section 3.7.8 on page 62.

Test equipment To test the output connect an volt meter to the output.
Expect to measure a voltage of 2 V when sending the value to the board. It
should look something like this:

Figure 5.12: Analog output.

Set the voltage output to max value and compare the measured value. The
value set and the value measured should be the same.

Partly conclusion The Analog Output Board is working properly.



5.4. TESTS 107

5.4.2.6 Analog Input Board operation test

Procedure To test this board do the following:

AD conversion Click in the GUI to update analog input.

Analyze result Compare the input voltage with the output voltage. They
should match each other or be relatively close. Please read the part on linearity
problems on page 93.

Partly conclusion The input received match the output send earlier. When
trying sending other values to the output board, the same values are received on
the input board. The GUI, the Digital Input Board and the Z8 ADC circuitry
is working.



108 CHAPTER 5. SYSTEM INTEGRATION

5.5 Test results

Conclusions
test test
All Boards using 5V, -5V, 12V or Achieved.
12V regulated power supply.
Operating temperature: in door temperature. Achieved.
The Z8 evaluation board Passing criteria.
Adaptor Board Conducts signals

as designed.
Bus system Passing criteria

and speci�cations.
Monitoring and Power Board Passing criteria

and speci�cations.
Digital Input Board Passing criteria

and speci�cations.
Digital Output Board Passing criteria

and speci�cations.
Analog Input Board Passing criteria

and speci�cations.
Analog Input Board Passing criteria

and speci�cations.
Analog Output Board Passing criteria

and speci�cations.
Power Supply Passing criteria

and speci�cations.
Communication protocol Functionality as

required.
GUI Passing criteria

and speci�cations.
Serial Communication At no time giving

instability or
extensive delays.

3rd. party software Installed on
the development PC.

Table 5.1: Conclusions



Chapter 6

Conclusion

6.1 Historical review
This project was developed in 2004. The early start was just before summer

vacation when the �rst test of serial communication was conducted. But the
project really took o� in the fall 2004 after �nishing 3 large assignments in
school.

The project was developed in these steps:

1. Research of design solutions in several hardware components.

2. Design of hardware.

3. Assembling the hardware and concurrently developing drivers and serial
communication code on Z8.

4. Development of the GUI.

The most di�cult part was the GUI and understanding the concept of QT
programming. All hardware worked the �rst time, and no problems of timing
and noise was encountered.

The only part that needed redesign was the Analog Input Board. The orig-
inal solution was based on the same addressing design like the other boards,
combined with a Sample and Hold and a reed relay. When the hardware was in
a continual AD conversion mode, the reed relay would switch o� and on so fast
that it produced a high frequency noise.

Milestones in the project

Research of hardware design Finished on the 10th of November, 2004.



110 CHAPTER 6. CONCLUSION

Hardware assembly and software drivers Finished on the 13th of December, 2004.

GUI Finished on the 22nd of December, 2004.

Documentation Finished on the 3rd of January 2005.

The project would have been �nished long before it was if several parts was
left out of the project. A lot of ideas was left out:

• LCD driver.

• DDS functionality1.

• WEB based GUI.

• All serial communication stored in a database for statistical analysis.

Some of those ideas are going to be implemented in the near future after the
project is o�cially �nished.

1Direct Digital Synthesis is a method to digitally create arbitrary waveforms and frequen-
cies from a single source �xed frequency.



6.2. FINAL CONCLUSION 111

6.2 Final conclusion
This project achieved its goal of designing, building and testing an interface

system for a PC running Linux according to speci�cations within the time table
of the project.

Through the project, knowledge of the subject was acquired:

• Design of a large project.

• Extensive research into the many parts of the subject.

• Serial communication between a Linux PC and the Z8 evaluation board.

• GUI programming.

• Planning the project in a time table.

Randers, on the 3rd of January 2005.

Michael Bernhard Sørensen



112 CHAPTER 6. CONCLUSION



Chapter 7

Appendix

7.1 Users manual

7.1.1 Prerequisite

7.1.1.1 Hardware

To use the hardware there must be a serial port / COM port. The port must
be assigned as /dev/ttyS0 on a working Linux computer. It must support a
speed at at least 57600 baud. Typically the speed is 115200 baud on the most
computers today.

7.1.1.2 Software

The computer must have the following software installed:

• A working Linux installation or booted from a live CD with graphical user
interface enabled.

• KDE desktop installed.

• KDE desktop running or another window manager which supports KDE-
applications.

7.1.1.3 User privilege requirements

1 The user of the GUI must have "write rights" to the /dev/ttyS0 device.

1Users must have adequate privilege in the Linuc �le system



114 CHAPTER 7. APPENDIX

7.1.2 Installation procedure

7.1.2.1 Installing the software

The GUI can be executed from any location within the �le system. But it
would be a good idea to place it in the search path, or making a "sym link"2 to
the executable �le.

This installation procedure could be used:

1. Copy the executable �le "rapier-gui" into directory which are "read only"
from the users point of view. For example in /usr/bin/.

2. Run the executable from a shell or from an icon on the Desktop.

Or:

1. Copy the executable �le "rapier-gui" into directory which has "read only"
from the users point of view. For example in /opt/rapier/. You may need
to create the directory yourself.

2. Create a link: ln /opt/rapier/rapier-gui /usr/bin/rapier

3. Run the executable rapier from a shell or from an icon on the Desktop.

7.1.2.2 Installing the hardware

To install the Rapier hardware follow these instructions:

1. Put the Adaptor Board on the Z8 evaluation board.

2. Connect all the boards to the �at cable.

3. Connect the �at cable to the Adaptor Board.

4. Connect the Z8 to the PC with a serial cable.

5. Connect the Power Cable to the 2 external power supplies. Watch for
BLACK and WHITE connector to the right power supply.

6. Connect the Z8 to its own power supply.

7. Turn on power for all units.

Proceed with the software installation.

Setting up for standard use
2A new name used instead of the original name of a �le.



7.1. USERS MANUAL 115

To ensure the right functionality it is important to follow these steps:

1. Look at the boards and note the ID set on the ID switches.

2. Start up the Rapier GUI application.

3. If the board Id's do not match those you've noted in the �rst step, please
reset them according to ID switches.

4. The Rapier system is ready for use.



116 CHAPTER 7. APPENDIX

7.1.2.3 Standard operating procedure

Overview

This is the main window of the GUI.

Figure 7.1: Rapier GUI.

It is divided into 4 parts:

• Analog part

• Digital part

• Communication log

• Quit button

The 4 parts are described on the following pages.



7.1. USERS MANUAL 117

7.1.2.4 Analog part

Figure 7.2: Rapier GUI analog input and output.

The Analog part is divided into Input and Output.

Input

Input voltage

By clickingthe update button, the analog input voltage on the Rapier hard-
ware is displayed in the �eld.

This input �eld is "read only"3.

Figure 7.3: Rapier GUI analog input voltage.

3"read only" means that the �eld cannot be edited.



118 CHAPTER 7. APPENDIX

Output

Board id Enter a hex number in this �eld to set the id matching the board.

Figure 7.4: Rapier GUI analog output board id.

Output voltage The analog output voltage are set by clicking on the spin
box's up and down arrows left of the desired voltage output

Figure 7.5: Rapier GUI analog output voltage.



7.1. USERS MANUAL 119

7.1.2.5 Digital part

Figure 7.6: Rapier GUI digital input and output.

Input

Board id Enter a hex number in this �eld to set the id matching the board.

Figure 7.7: Rapier GUI digital input board id.

Input The input on the digital input board is displayed here. Click on the
update button to update the display.

This input �eld is "read only".

Figure 7.8: Rapier GUI digital input.



120 CHAPTER 7. APPENDIX

Output

Board id Enter a hex number in this �eld to set the id matching the board.

Figure 7.9: Rapier GUI digital output board id.

Output By clicking these radio buttons you can set the digital outputs.

Each radio button is accessible through keyboard short cuts. On the keyboard
press ALT+1 through ALT+8 to toggle the radio buttons on and o�.

Figure 7.10: Rapier GUI digital output.



7.1. USERS MANUAL 121

7.1.2.6 Communication log

Figure 7.11: Rapier GUI communication log.

The log This is a "read only" part of the program. It is possible to mark the
text and copy it into the clip board for later use in another program.

The text and messages are described later in the protocol section.

The most obvious use of this part is seeing that after every instruction send
to the hardware, there is an "x" as a con�rmation. If there is no "x" after each
instruction, then there's something wrong. Typically a problem with the serial
speed of the system.

In this part you are able to inspect the communication between the PC and
the hardware, and some messages about the operation.

7.1.2.7 Quit

Figure 7.12: Rapier GUI quit button.



122 CHAPTER 7. APPENDIX

This button quits the program.

7.1.2.8 Connecting the hardware

Connect the Analog Input Board to any source of an analog voltage ranging
from 0V - 2V.

Connect the Analog Output Board to voltmeter or any device controlled by
an analog voltage in the range of 0V - 2V.

Connect the Digital Output Board to any device with up to 8 TTL-level4
inputs.

Connect the Digital Input Board to any device with up to 8 TTL-level outputs.

To test the Rapier hardware, connect the Analog Input Board to Analog
Output Board and connect the Digital Output Board to Digital Input Board.
This method can be used for diagnostics and self test.

Figure 7.13: Looping output to input.

4Transistor-transistor logic (TTL) is a class of digital circuits built from bipolar junction
transistors (BJT), and resistors; it is notable for being the base for the �rst widespread
semiconductor integrated circuit (IC) technology. TTL gained almost universal acceptance
after Texas Instruments had greatly facilitated the construction of digital systems with their
1962 introduction of the 7400 series of ICs.



7.2. REFERENCES 123

7.2 References
This is a list of sources of information on which the project is based on:

• Doxygen at

http://www.stack.nl/~dimitri/doxygen/index.html

• LATEX2εreference at

http://www.latex-project.org/

• C reference at

http://www-ccs.ucsd.edu/c/

• C++ reference at

http://www.cplusplus.com/

• QT-designer

http://www.trolltech.com/products/qt/designer.html

• QT docs at

http://doc.trolltech.com/3.3/index.html

• Bash howto at

http://www.tldp.org/LDP/abs/html/

• Umrello editor (UML) at

http://uml.sourceforge.net/index.php

• RS232 described at

http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html

• 74ALS520 described at

http://focus.ti.com/docs/prod/folders/print/sn74als520.html

• Z8 described at

http://www.zilog.com/products/partdetails.asp?id=Z8F6403

• 74ls373 described at

http://focus.ti.com/docs/prod/folders/print/sn74ls373.html



124 CHAPTER 7. APPENDIX

• 74ls74 described at

http://focus.ti.com/docs/prod/folders/print/sn74ls74a.html

• 74ls00 described at

http://focus.ti.com/docs/prod/folders/print/sn74ls00.html

• TL072 described at

http://focus.ti.com/docs/prod/folders/print/tl072.html

• DAC0808 described at

http://www.national.com/pf/DA/DAC0808.html

• 74ls04 described at

http://focus.ti.com/docs/prod/folders/print/sn74ls04.html

• CNY17 described at

http://www.fairchildsemi.com/pf/CN/CNY17-2.html

• ULN2803A described at

http://www.chipdocs.com/datasheets/datasheet-pdf/Allegro-MicroSystems-Inc/ULN2803.html

• Quanta described at

http://quanta.sourceforge.net/

• Gimp described at

http://www.gimp.org/

• Wikipedia, a free-content encyclopedia

http://en.wikipedia.org/wiki/Main_Page

7.3 main.c File Reference
#include <stdio.h>

#include <string.h>

#include <eZ8.h>

#include <sio.h>

#include "driver.h"

#include "main.h"



7.3. MAIN.C FILE REFERENCE 125

Functions
• char getinput ()

Low nibble of a char. Reveives a character from the serial line.

• char chartohex (unsigned char tempchar)
Converting a char into a number.

• void bytetotwoascii (unsigned char tempdata)
Converts a byte in to 2 nibbles, and send it to the PC.

• void main ()
Main function.

Variables
• char mych
• char chararray [ ] = "0123456789abcdef"

Character received from the PC.

• char ∗ loc
String to hold hex values.

• unsigned char datahigh
Hold the position of a hex value in the chararray[].

• unsigned char datalow
High nibble of a char.

7.3.1 Function Documentation

7.3.1.1 void bytetotwoascii (unsigned char tempdata)

Converts a byte in to 2 nibbles, and send it to the PC.
Function to convert a byte into 2 nibbles, and each nibble converted into a hex
value. Each nibble is send to the PC through the serial connection.
De�nition at line 64 of �le main.c.
References chararray, datahigh, and datalow.
Referenced by main().



126 CHAPTER 7. APPENDIX

7.3.1.2 char chartohex (unsigned char tempchar)

Converting a char into a number.
Function to convert a hex value ranging from 0 - f into a number ranging from
0 - 15.
De�nition at line 51 of �le main.c.
References chararray, and loc.
Referenced by main().

7.3.1.3 char getinput ()

Low nibble of a char. Reveives a character from the serial line.
Function to receive a single character from the RS232 connection to the PC.
De�nition at line 38 of �le main.c.
References mych.
Referenced by main().

7.3.1.4 void main ()

Main function.
The main function. This function sets up the AD bus, Control bus and the
serial port. Main takes care of the principal functionallity in the system.
De�nition at line 79 of �le main.c.
References ADBUSOUT, adressingboard(), bussetup(), bytein(), byteout(), byte-
totwoascii(), chartohex(), datahigh, datalow, delaycycles, getinput(), mych, sin-
gleadconverting(), and writeFlash().

7.3.2 Variable Documentation

7.3.2.1 char chararray[ ] = "0123456789abcdef"

Character received from the PC.
De�nition at line 9 of �le main.c.
Referenced by bytetotwoascii(), and chartohex().

7.3.2.2 unsigned char datahigh

Hold the position of a hex value in the chararray[].
De�nition at line 11 of �le main.c.
Referenced by bytetotwoascii(), and main().



7.3. MAIN.C FILE REFERENCE 127

7.3.2.3 unsigned char datalow

High nibble of a char.
De�nition at line 12 of �le main.c.
Referenced by bytetotwoascii(), and main().

7.3.2.4 char∗ loc

String to hold hex values.
De�nition at line 10 of �le main.c.
Referenced by chartohex().

7.3.2.5 char mych

De�nition at line 8 of �le main.c.
Referenced by getinput(), and main().



128 CHAPTER 7. APPENDIX

7.4 main.h File Reference

Functions
• void writeFlash (void)
• void init_�ash (unsigned long freq)

Variables
• char x
• long delaycycles

7.4.1 Function Documentation

7.4.1.1 void init_�ash (unsigned long freq)

7.4.1.2 void writeFlash (void)

De�nition at line 6 of �le z8-system.c.
Referenced by main().

7.4.2 Variable Documentation

7.4.2.1 long delaycycles

De�nition at line 4 of �le main.h.
Referenced by main().

7.4.2.2 char x

De�nition at line 3 of �le main.h.
Referenced by writeFlash().



7.5. DRIVER.C FILE REFERENCE 129

7.5 driver.c File Reference
#include <ez8.h>

#include "main.h"

#include "driver.h"

Functions
• void adbusoutput (char c)

Byte value to A/D bus.

• void adress_enable_on ()
Enables Address Enable signal.

• void adress_enable_o� ()
Disables Address Enable signal.

• void adress_decode_on ()
Enables Address Decode signal.

• void adress_decode_o� ()
Disables Address Decode signal.

• void output_function_enable_on ()
Enables Output Function Enable signal.

• void output_function_enable_o� ()
Disables Output Function Enable signal.

• void input_function_enable_on ()
Enables Input Function Enable signal.

• void input_function_enable_o� ()
Disables Input Function Enable signal.

• void deselect_board_on ()
Enables Deselect Board signal.

• void deselect_board_o� ()
Disables Deselect Board signal.

• void adressingboard (char id)
Addressing a board.

• void byteout (char data)



130 CHAPTER 7. APPENDIX

Sends a byte to a board.

• char bytein ()
Recieves a byte from a board.

• char singleadconverting ()
A/D converting.

• void dob (char id, char data)
Digital Output Board operation.

• char dib (char id)
Digital Input Board operation.

• void aob (char id, char data)
Analog Output Board operation.

• char aib ()
Analog Input Board operation.

• void setadcinputs ()
Seting up port H to analog inputs.

• void setadbustoinput ()
Setup port G to input.

• void setadbustooutput ()
Setup port G to output.

• void bussetup ()
Seting up Bus system.

7.5.1 Function Documentation

7.5.1.1 void adbusoutput (char c)

Byte value to A/D bus.
Function to output a char to the AD bus.
De�nition at line 13 of �le driver.c.
References ADBUSOUT.
Referenced by adressingboard(), and byteout().



7.5. DRIVER.C FILE REFERENCE 131

7.5.1.2 void adress_decode_o� ()

Disables Address Decode signal.
Function to turn on the Address Decode pin on Control Bus low. Does not
a�ect other signals on the control.
De�nition at line 60 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by adressingboard().

7.5.1.3 void adress_decode_on ()

Enables Address Decode signal.
Function to turn on the Address Decode pin on Control Bus high. Does not
a�ect other signals on the control.
De�nition at line 48 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by adressingboard().

7.5.1.4 void adress_enable_o� ()

Disables Address Enable signal.
Function to turn on the Address Enable pin on Control Bus low. Does not a�ect
other signals on the control.
De�nition at line 36 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by adressingboard().

7.5.1.5 void adress_enable_on ()

Enables Address Enable signal.
Function to turn on the Address Enable pin on Control Bus high. Does not
a�ect other signals on the control.
De�nition at line 24 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by adressingboard().

7.5.1.6 void adressingboard (char id)

Addressing a board.



132 CHAPTER 7. APPENDIX

Function to put an address on the AD bus.
De�nition at line 145 of �le driver.c.
References adbusoutput(), adress_decode_o�(), adress_decode_on(), adress_-
enable_o�(), and adress_enable_on().
Referenced by aob(), dib(), dob(), and main().

7.5.1.7 char aib ()

Analog Input Board operation.
Function to perform a full AD conversion. This function exists to match the
other board functions.
De�nition at line 247 of �le driver.c.
References singleadconverting().

7.5.1.8 void aob (char id, char data)

Analog Output Board operation.
Function to perform a full board operation for a Analog Output Board.
De�nition at line 235 of �le driver.c.
References adressingboard(), and byteout().

7.5.1.9 void bussetup ()

Seting up Bus system.
Function to set up the Z8 port E for Control bus use.
De�nition at line 329 of �le driver.c.
References ADBUSOUT, CONTROLBUSOUT, deselect_board_o�(), deselect_-
board_on(), setadbustooutput(), and setadcinputs().
Referenced by main().

7.5.1.10 char bytein ()

Recieves a byte from a board.
Function to reveive data from a board. The function sets the AD bus to input
mode before requesting data from the board. After data has been reveived, the
board is turned o� and AD bus set to output mode again.
De�nition at line 176 of �le driver.c.
References ADBUSIN, input_function_enable_o�(), input_function_enable_-
on(), setadbustoinput(), and setadbustooutput().



7.5. DRIVER.C FILE REFERENCE 133

Referenced by dib(), and main().

7.5.1.11 void byteout (char data)

Sends a byte to a board.
Function to put data on the AD bus and toggle Output Function enable ON
and OFF.
De�nition at line 161 of �le driver.c.
References adbusoutput(), output_function_enable_o�(), and output_function_-
enable_on().
Referenced by aob(), dob(), and main().

7.5.1.12 void deselect_board_o� ()

Disables Deselect Board signal.
Function to turn on the Deselect Board pin on Control Bus high. Does not
a�ect other signals on the control.
De�nition at line 132 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by bussetup().

7.5.1.13 void deselect_board_on ()

Enables Deselect Board signal.
Function to turn on the Deselect Board pin on Control Bus high. Does not
a�ect other signals on the control.
De�nition at line 120 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by bussetup().

7.5.1.14 char dib (char id)

Digital Input Board operation.
Function to perform a full board operation for a Digital Input Board.
De�nition at line 221 of �le driver.c.
References adressingboard(), and bytein().



134 CHAPTER 7. APPENDIX

7.5.1.15 void dob (char id, char data)

Digital Output Board operation.
Function to perform a full board operation for a Digital Output Board.
De�nition at line 208 of �le driver.c.
References adressingboard(), and byteout().

7.5.1.16 void input_function_enable_o� ()

Disables Input Function Enable signal.
Function to turn on the Input Function Enable pin on Control Bus low. Does
not a�ect other signals on the control.
De�nition at line 108 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by bytein().

7.5.1.17 void input_function_enable_on ()

Enables Input Function Enable signal.
Function to turn on the Input Function Enable pin on Control Bus high. Does
not a�ect other signals on the control.
De�nition at line 96 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by bytein().

7.5.1.18 void output_function_enable_o� ()

Disables Output Function Enable signal.
Function to turn on the Output Function Enable pin on Control Bus low. Does
not a�ect other signals on the control.
De�nition at line 84 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by byteout().

7.5.1.19 void output_function_enable_on ()

Enables Output Function Enable signal.
Function to turn on the Output Function Enable pin on Control Bus high. Does
not a�ect other signals on the control.



7.5. DRIVER.C FILE REFERENCE 135

De�nition at line 72 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by byteout().

7.5.1.20 void setadbustoinput ()

Setup port G to input.
Function to set up the Z8 port G for AD bus input mode use.
De�nition at line 303 of �le driver.c.
Referenced by bytein().

7.5.1.21 void setadbustooutput ()

Setup port G to output.
Function to set up the Z8 port G for AD bus output mode use.
De�nition at line 316 of �le driver.c.
Referenced by bussetup(), and bytein().

7.5.1.22 void setadcinputs ()

Seting up port H to analog inputs.
Function to set up the ADC in the Z8.
De�nition at line 288 of �le driver.c.
Referenced by bussetup().

7.5.1.23 char singleadconverting ()

A/D converting.
Function to perform an AD conversion in the Z8. Only the 8 highest bit of the
10 bit result is used.
De�nition at line 193 of �le driver.c.
Referenced by aib(), and main().



136 CHAPTER 7. APPENDIX

7.6 driver.h File Reference

De�nes
• #de�ne ADBUSOUT PGOUT
• #de�ne ADBUSIN PGIN
• #de�ne CONTROLBUSOUT PEOUT
• #de�ne CONTROLBUSIN PEIN

Functions
• void adbusoutput (char c)

Byte value to A/D bus.

• void adress_enable_on ()
Enables Address Enable signal.

• void adress_enable_o� ()
Disables Address Enable signal.

• void adress_decode_on ()
Enables Address Decode signal.

• void adress_decode_o� ()
Disables Address Decode signal.

• void output_function_enable_on ()
Enables Output Function Enable signal.

• void output_function_enable_o� ()
Disables Output Function Enable signal.

• void input_function_enable_on ()
Enables Input Function Enable signal.

• void input_function_enable_o� ()
Disables Input Function Enable signal.

• void deselect_board_on ()
Enables Deselect Board signal.

• void deselect_board_o� ()
Disables Deselect Board signal.

• void setadcinputs ()
Seting up port H to analog inputs.



7.6. DRIVER.H FILE REFERENCE 137

• void setadbustoinput ()
Setup port G to input.

• void setadbustooutput ()
Setup port G to output.

• void bussetup ()
Seting up Bus system.

• char nightridertest ()
• void testcontrols ()
• void adressingboard (char id)

Addressing a board.

• void byteout (char data)
Sends a byte to a board.

• char bytein ()
Recieves a byte from a board.

• char singleadconverting ()
A/D converting.

• void dob (char id, char data)
Digital Output Board operation.

• char dib (char id)
Digital Input Board operation.

• void aob (char id, char data)
Analog Output Board operation.

• char aib ()
Analog Input Board operation.

• void longdelay ()

7.6.1 De�ne Documentation

7.6.1.1 #de�ne ADBUSIN PGIN

De�nition at line 2 of �le driver.h.
Referenced by bytein().



138 CHAPTER 7. APPENDIX

7.6.1.2 #de�ne ADBUSOUT PGOUT

De�nition at line 1 of �le driver.h.
Referenced by adbusoutput(), bussetup(), and main().

7.6.1.3 #de�ne CONTROLBUSIN PEIN

De�nition at line 4 of �le driver.h.
Referenced by adress_decode_o�(), adress_decode_on(), adress_enable_o�(),
adress_enable_on(), deselect_board_o�(), deselect_board_on(), input_function_-
enable_o�(), input_function_enable_on(), output_function_enable_o�(), and
output_function_enable_on().

7.6.1.4 #de�ne CONTROLBUSOUT PEOUT

De�nition at line 3 of �le driver.h.
Referenced by adress_decode_o�(), adress_decode_on(), adress_enable_o�(),
adress_enable_on(), bussetup(), deselect_board_o�(), deselect_board_on(),
input_function_enable_o�(), input_function_enable_on(), output_function_-
enable_o�(), and output_function_enable_on().

7.6.2 Function Documentation

7.6.2.1 void adbusoutput (char c)

Byte value to A/D bus.
Function to output a char to the AD bus.
De�nition at line 13 of �le driver.c.
References ADBUSOUT.
Referenced by adressingboard(), and byteout().

7.6.2.2 void adress_decode_o� ()

Disables Address Decode signal.
Function to turn on the Address Decode pin on Control Bus low. Does not
a�ect other signals on the control.
De�nition at line 60 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by adressingboard().



7.6. DRIVER.H FILE REFERENCE 139

7.6.2.3 void adress_decode_on ()

Enables Address Decode signal.
Function to turn on the Address Decode pin on Control Bus high. Does not
a�ect other signals on the control.
De�nition at line 48 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by adressingboard().

7.6.2.4 void adress_enable_o� ()

Disables Address Enable signal.
Function to turn on the Address Enable pin on Control Bus low. Does not a�ect
other signals on the control.
De�nition at line 36 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by adressingboard().

7.6.2.5 void adress_enable_on ()

Enables Address Enable signal.
Function to turn on the Address Enable pin on Control Bus high. Does not
a�ect other signals on the control.
De�nition at line 24 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by adressingboard().

7.6.2.6 void adressingboard (char id)

Addressing a board.
Function to put an address on the AD bus.
De�nition at line 145 of �le driver.c.
References adbusoutput(), adress_decode_o�(), adress_decode_on(), adress_-
enable_o�(), and adress_enable_on().
Referenced by aob(), dib(), dob(), and main().

7.6.2.7 char aib ()

Analog Input Board operation.



140 CHAPTER 7. APPENDIX

Function to perform a full AD conversion. This function exists to match the
other board functions.
De�nition at line 247 of �le driver.c.
References singleadconverting().

7.6.2.8 void aob (char id, char data)

Analog Output Board operation.
Function to perform a full board operation for a Analog Output Board.
De�nition at line 235 of �le driver.c.
References adressingboard(), and byteout().

7.6.2.9 void bussetup ()

Seting up Bus system.
Function to set up the Z8 port E for Control bus use.
De�nition at line 329 of �le driver.c.
References ADBUSOUT, CONTROLBUSOUT, deselect_board_o�(), deselect_-
board_on(), setadbustooutput(), and setadcinputs().
Referenced by main().

7.6.2.10 char bytein ()

Recieves a byte from a board.
Function to reveive data from a board. The function sets the AD bus to input
mode before requesting data from the board. After data has been reveived, the
board is turned o� and AD bus set to output mode again.
De�nition at line 176 of �le driver.c.
References ADBUSIN, input_function_enable_o�(), input_function_enable_-
on(), setadbustoinput(), and setadbustooutput().
Referenced by dib(), and main().

7.6.2.11 void byteout (char data)

Sends a byte to a board.
Function to put data on the AD bus and toggle Output Function enable ON
and OFF.
De�nition at line 161 of �le driver.c.
References adbusoutput(), output_function_enable_o�(), and output_function_-
enable_on().



7.6. DRIVER.H FILE REFERENCE 141

Referenced by aob(), dob(), and main().

7.6.2.12 void deselect_board_o� ()

Disables Deselect Board signal.
Function to turn on the Deselect Board pin on Control Bus high. Does not
a�ect other signals on the control.
De�nition at line 132 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by bussetup().

7.6.2.13 void deselect_board_on ()

Enables Deselect Board signal.
Function to turn on the Deselect Board pin on Control Bus high. Does not
a�ect other signals on the control.
De�nition at line 120 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by bussetup().

7.6.2.14 char dib (char id)

Digital Input Board operation.
Function to perform a full board operation for a Digital Input Board.
De�nition at line 221 of �le driver.c.
References adressingboard(), and bytein().

7.6.2.15 void dob (char id, char data)

Digital Output Board operation.
Function to perform a full board operation for a Digital Output Board.
De�nition at line 208 of �le driver.c.
References adressingboard(), and byteout().

7.6.2.16 void input_function_enable_o� ()

Disables Input Function Enable signal.
Function to turn on the Input Function Enable pin on Control Bus low. Does
not a�ect other signals on the control.



142 CHAPTER 7. APPENDIX

De�nition at line 108 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by bytein().

7.6.2.17 void input_function_enable_on ()

Enables Input Function Enable signal.
Function to turn on the Input Function Enable pin on Control Bus high. Does
not a�ect other signals on the control.
De�nition at line 96 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by bytein().

7.6.2.18 void longdelay ()

7.6.2.19 char nightridertest ()

7.6.2.20 void output_function_enable_o� ()

Disables Output Function Enable signal.
Function to turn on the Output Function Enable pin on Control Bus low. Does
not a�ect other signals on the control.
De�nition at line 84 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by byteout().

7.6.2.21 void output_function_enable_on ()

Enables Output Function Enable signal.
Function to turn on the Output Function Enable pin on Control Bus high. Does
not a�ect other signals on the control.
De�nition at line 72 of �le driver.c.
References CONTROLBUSIN, and CONTROLBUSOUT.
Referenced by byteout().

7.6.2.22 void setadbustoinput ()

Setup port G to input.
Function to set up the Z8 port G for AD bus input mode use.



7.6. DRIVER.H FILE REFERENCE 143

De�nition at line 303 of �le driver.c.
Referenced by bytein().

7.6.2.23 void setadbustooutput ()

Setup port G to output.
Function to set up the Z8 port G for AD bus output mode use.
De�nition at line 316 of �le driver.c.
Referenced by bussetup(), and bytein().

7.6.2.24 void setadcinputs ()

Seting up port H to analog inputs.
Function to set up the ADC in the Z8.
De�nition at line 288 of �le driver.c.
Referenced by bussetup().

7.6.2.25 char singleadconverting ()

A/D converting.
Function to perform an AD conversion in the Z8. Only the 8 highest bit of the
10 bit result is used.
De�nition at line 193 of �le driver.c.
Referenced by aib(), and main().

7.6.2.26 void testcontrols ()



144 CHAPTER 7. APPENDIX

7.7 main.cpp File Reference
#include "mainwindow.h"

#include <qapplication.h>

Functions
• int main (int argc, char ∗∗argv)

Main function in the GUI application.

7.7.1 Function Documentation

7.7.1.1 int main (int argc, char ∗∗ argv)

Main function in the GUI application.
Function to start the GUI.
De�nition at line 13 of �le main.cpp.

13 {
14 QApplication app(argc, argv );
15 MainWindow window;
16 window.show();
17 app.connect( &app, SIGNAL( lastWindowClosed() ), &app, SLOT( quit() ) );
18 return app.exec();
19 }



7.8. MAINWINDOW.UI.H FILE REFERENCE 145

7.8 mainwindow.ui.h File Reference
#include <unistd.h>

#include <string.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <termios.h>

#include <stdio.h>

Variables
• int fd = 0
• char sCmd [254]
• char sResult [254]
• QString serialport = "/dev/ttyS0"
• QString aoid = "08"
• QString doid = "02"
• QString diid = "04"

7.8.1 Variable Documentation

7.8.1.1 QString aoid = "08"

De�nition at line 25 of �le mainwindow.ui.h.

7.8.1.2 QString diid = "04"

De�nition at line 27 of �le mainwindow.ui.h.

7.8.1.3 QString doid = "02"

De�nition at line 26 of �le mainwindow.ui.h.

7.8.1.4 int fd = 0

De�nition at line 21 of �le mainwindow.ui.h.

7.8.1.5 char sCmd[254]

De�nition at line 22 of �le mainwindow.ui.h.



146 CHAPTER 7. APPENDIX

7.8.1.6 QString serialport = "/dev/ttyS0"

De�nition at line 24 of �le mainwindow.ui.h.

7.8.1.7 char sResult[254]

De�nition at line 23 of �le mainwindow.ui.h.



7.8. MAINWINDOW.UI.H FILE REFERENCE 147

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗ ui.h extension �le, included from the uic generated form implementation.
∗∗
∗∗ If you want to add, delete, or rename functions or slots, use
∗∗ Qt Designer to update this �le, preserving your code.
∗∗
∗∗ You should not de�ne a constructor or destructor in this �le.
∗∗ Instead, write your code in functions called init() and destroy().
∗∗ These will automatically be called by the form's constructor and
∗∗ destructor.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <termios.h>
#include <stdio.h>

int fd = 0;
char sCmd[254];
char sResult[254];
QString serialport = "/dev/ttyS0";
QString aoid = "08";
QString doid = "02";
QString diid = "04";

/∗∗
∗ @brief Initializes the GUI.
∗ @return Errorlevel as an int.
∗/

/∗!
Function to start up the GUI and setting some default values.

∗/
int MainWindow::init(){

CommunicationLog >append("Starting program up");
//QRegExp regExp("[ ]{0,1}\\d∗\\.\\d+");
//QRegExp regExp("�[\xhhhh]{1,2}$");
// AIid >setValidator(new QRegExpValidator(regExp, this));
// DIid >setValidator(new QRegExpValidator(regExp, this));
// DOid >setValidator(new QRegExpValidator(regExp, this));
// system("/bin/setserial /dev/ttyS0");
AOid >setText(aoid);
DIid >setText(diid);
DOid >setText(doid);
if (OpenPort() < 0) {

return 0;



148 CHAPTER 7. APPENDIX

}
CommunicationLog >append("Serial port open");
UpdateDigitalInput();
UpdateAnalogInput();
UpdateDigitalOutput();
UpdateAnalogOutput();
return 0;

}

/∗∗
∗ @brief
∗ @param
∗ @return
∗/

/∗!
Function to

∗/
void MainWindow::destroy(){

CommunicationLog >append("Closing program down");
}

/∗∗
∗ @brief
∗ @param
∗ @return
∗/

/∗!
Function to

∗/
QString MainWindow::GetInput( QString command ){

CommunicationLog >append(command);
QString toreturn = "";
QString tempstr = "";
WritePort(command);
usleep(100000);
if (ReadPort(sResult,254) > 0) {

toreturn = sResult;
CommunicationLog >append(toreturn);

}
for(unsigned int i = 0; i<=toreturn.length() ;i++){

if(toreturn[i] != 'x'){
tempstr+=toreturn[i];

}
}
toreturn = tempstr.simplifyWhiteSpace();
return toreturn;

}

/∗∗
∗ @brief



7.8. MAINWINDOW.UI.H FILE REFERENCE 149

∗ @param
∗ @return
∗/

/∗!
Function to

∗/
void MainWindow::UpdateAnalogInput(){

QString hexstr;
QString outputstr;
// Sends instuction to do a single A/D conversion
hexstr = GetInput("k");
// Strips o� the unused characters in string
hexstr = hexstr.left( 2 );

// Prepends characters before the Hex to Dec conversion
hexstr = hexstr.prepend("0x");
// Doing the Hex to Dec conversion
bool ok;
int voltage1 = hexstr.toInt(&ok, 16);
// Typecasting the voltage value to a double
double voltage2 = (double) voltage1 ∗ 0.007843137;
voltage2 ∗= 100.0;
double param, fractpart, intpart;
param = voltage2;
fractpart = modf (param , &intpart);
if((fractpart∗10.0)>4){
intpart++;
}
voltage2 = (double) intpart ∗ 0.01;
outputstr.setNum(voltage2);
outputstr.append(" V");
LineEditAI >setText(outputstr);

}

/∗∗
∗ @brief
∗ @param
∗ @return
∗/

/∗!
Function to

∗/
void MainWindow::UpdateAnalogOutput(){

bool ok;
//QString output = "s08";
QString output = "s";
output.append(aoid);

QString voltage = spinBoxAO >text();
QString stripvoltage = voltage.left(voltage.�nd(" "));



150 CHAPTER 7. APPENDIX

stripvoltage = stripvoltage.simplifyWhiteSpace();
int ivoltage = stripvoltage.toInt(&ok, 10);
double dvoltage = ((double)ivoltage / 7.81640625);
ivoltage = (int)dvoltage;
QString str = QString( "%1" ).arg( ivoltage, 0, 16 );
output.append("o");
if(str.length() == 1){

output.append("0");
}
output.append(str);
GetInput(output);
UpdateAnalogInput();
//output.append( voltage );

}

/∗∗
∗ @brief
∗ @param
∗ @return
∗/

/∗!
Function to

∗/
int MainWindow::OpenPort(){

CommunicationLog >append(serialport.ascii());
//char sPortName[64]="/dev/ttyS0";
//char sPortName[64]=serialport.latin1();
ClosePort();
//fd = open(sPortName, O_RDWR | O_NOCTTY | O_NDELAY);
fd = open(serialport.ascii(), O_RDWR | O_NOCTTY | O_NDELAY);
if (fd < 0) {

printf("open error %d %s\n", errno, strerror(errno));
} else {

struct termios my_termios;
tcgetattr(fd, &my_termios);
tc�ush(fd, TCIFLUSH);
my_termios.c_c�ag = B9600 | CS8 |CREAD | CLOCAL | HUPCL;
cfsetospeed(&my_termios, B57600);
//cfsetospeed(&my_termios, B38400);

tcsetattr(fd, TCSANOW, &my_termios);
}
return fd;

}

/∗∗
∗ @brief
∗ @param
∗ @return
∗/



7.8. MAINWINDOW.UI.H FILE REFERENCE 151

/∗!
Function to

∗/
void MainWindow::ClosePort(){

if (fd > 0) {
close(fd);
}

}

/∗∗
∗ @brief
∗ @param
∗ @return
∗/

/∗!
Function to

∗/
int MainWindow::ReadPort( char ∗ psResponse, int iMax ){

int iIn;
if (fd < 1) {

printf(" port is not open\n");
return 1;
}
strncpy (psResponse, "N/A", iMax<4?iMax:4);
iIn = read(fd, psResponse, iMax 1);
if (iIn < 0) {

if (errno == EAGAIN) {
return 0;

} else {
printf("read error %d %s\n", errno, strerror(errno));

}
} else {

psResponse[iIn<iMax?iIn:iMax] = '\0';
}
return iIn;

}

/∗∗
∗ @brief
∗ @param
∗ @return
∗/

/∗!
Function to

∗/
int MainWindow::WritePort( QString psOutput ){

int iOut;
if (fd < 1) {



152 CHAPTER 7. APPENDIX

printf("Port is not open\n");
return 1;
}
iOut = write(fd, psOutput.ascii(), strlen(psOutput));
if (iOut < 0) {
printf("write error %d %s\n", errno, strerror(errno));
} else {
}
return iOut;

}

/∗∗
∗ @brief
∗ @param
∗ @return
∗/

/∗!
Function to

∗/
void MainWindow::UpdateDigitalInput(){

QString hexstr;
QString str = "s";
str.append(diid);
str.append("i");
hexstr = GetInput(str);

hexstr = hexstr.left( 2 );
hexstr = hexstr.prepend("0x");
bool ok;
int value = hexstr.toInt(&ok, 16);

if(value >= 128){
DI8 >setChecked(1);
value = 128;

} else {
DI8 >setChecked(0);

}
if(value >= 64){

DI7 >setChecked(1);
value = 64;

} else {
DI7 >setChecked(0);

}
if(value >= 32){

DI6 >setChecked(1);
value = 32;

} else {
DI6 >setChecked(0);



7.8. MAINWINDOW.UI.H FILE REFERENCE 153

}
if(value >= 16){

DI5 >setChecked(1);
value = 16;

} else {
DI5 >setChecked(0);

}
if(value >= 8){

DI4 >setChecked(1);
value = 8;

} else {
DI4 >setChecked(0);

}
if(value >= 4){

DI3 >setChecked(1);
value = 4;

} else {
DI3 >setChecked(0);

}
if(value >= 2){

DI2 >setChecked(1);
value = 2;

} else {
DI2 >setChecked(0);

}
if(value >= 1){

DI1 >setChecked(1);
value = 1;

} else {
DI1 >setChecked(0);

}
}

/∗∗
∗ @brief
∗ @param
∗ @return
∗/

/∗!
Function to

∗/
void MainWindow::UpdateDigitalOutput(){

QString str = "s";
str.append(doid);
str.append("o");
int value = 0;
if(DO8 >isChecked()){

value += 128;
}
if(DO7 >isChecked()){



154 CHAPTER 7. APPENDIX

value += 64;
}
if(DO6 >isChecked()){

value += 32;
}
if(DO5 >isChecked()){

value += 16;
}
if(DO4 >isChecked()){

value += 8;
}
if(DO3 >isChecked()){

value += 4;
}
if(DO2 >isChecked()){

value += 2;
}
if(DO1 >isChecked()){

value += 1;
}
QString tempstr = QString( "%1" ).arg( value, 0, 16 );
if(tempstr.length() == 1){

tempstr.prepend("0");
}
str.append(tempstr);
GetInput(str);

}

/∗∗
∗ @brief Sets the new Analog Output Board id.
∗ @return Void.
∗/

/∗!
Function to set the new Analog Output Board id by setting the id in a QString and inform the user through the communication log.

∗/
void MainWindow::changeAOid(){

aoid = AOid >text();
CommunicationLog >append("Analog Output id changed");
CommunicationLog >append(aoid);

}

/∗∗
∗ @brief Sets the new Digital Input Board id.
∗ @return Void.
∗/

/∗!
Function to set the new Digital Input Board id by setting the id in a QString and inform the user through the communication log.

∗/
void MainWindow::changeDIid(){

diid = DIid >text();



7.8. MAINWINDOW.UI.H FILE REFERENCE 155

CommunicationLog >append("Digital Input id changed");
CommunicationLog >append(diid);

}

/∗∗
∗ @brief Sets the new Digital Output Board id.
∗ @return Void.
∗/

/∗!
Function to set the new Digital Output Board id by setting the id in a QString and inform the user through the communication log.

∗/
void MainWindow::changeDOid(){

doid = DOid >text();
CommunicationLog >append("Digital Output id changed");
CommunicationLog >append(doid);

}



156 CHAPTER 7. APPENDIX

7.9 Rapierproject code
This is the source code for the project �le management system:

#!/bin/bash
DIALOG=${DIALOG=dialog}
tempfile=`tempfile 2>/dev/null` || tempfile=/tmp/test$$
choice=1
#WEBTARGET="/var/www/sfmirror"
WEBTARGET="karneevor@rapier.sourceforge.net:/home/groups/r/ra/rapier/htdocs"
trap "rm -f $tempfile" 0 1 2 5 15

function toggletarget(){
if [ "$WEBTARGET" == "karneevor@rapier.sourceforge.net:/home/groups/r/ra/rapier/htdocs" ]
then

WEBTARGET="/var/www/sfmirror"
else

WEBTARGET="karneevor@rapier.sourceforge.net:/home/groups/r/ra/rapier/htdocs"
fi

}

function UpdateZ8Documentation(){
echo "Getting Z8 documentation"
echo "running doxygen in Z8 code"
cd /mnt/c-drev/rapier
doxygen doxygen.conf
echo "Updating the Z8 code documentation into latex"
rsync -vut /mnt/c-drev/rapier/docs/latex/* /data/rapier-project/documentation/latex/z8/
echo "Updating the Z8 code documentation into html"
rsync -vut /mnt/c-drev/rapier/docs/html/* /data/rapier-project/sourceforge/html/documentation/z8/
cd /data/rapier-project

}

function UpdateGUIDocumentation(){
echo "Getting GUI documentation"
echo "Running doxygen in GUI code"
cd /data/rapier-project/software/gui
doxygen doxygen.conf

echo "Updating the GUI code documentation into latex"
rsync -vut /data/rapier-project/software/gui/docs/latex/* /data/rapier-project/documentation/latex/gui/
echo "Updating the GUI code documentation into html"
rsync -vut /data/rapier-project/software/gui/docs/html/* /data/rapier-project/sourceforge/html/documentation/gui/

cd /data/rapier-project

sleep 4
}

function BackupTools(){
echo "Backing up Tools ..."
itctools --dir-full tools/

}

function BackupManagement(){
echo "Backing up Management ..."
itctools --dir-full management/

}

function BackupHardware(){
echo "Backing up Hardware ..."
itctools --dir-full hardware/

}

function BackupSoftware(){
echo "Backing up software ..."
itctools --dir-full software/

}

function BackupSourceForge(){
echo "Backing up source forge ..."
itctools --dir-full sourceforge/

}

function BackupDocumentation(){
echo "Backing up documentation ..."
itctools --dir-full documentation/

}

function MakeLatexTools(){
echo "Making latex tools."
cd tools/dds/
tar czvf ../../sourceforge/html/tools/unitycircle.tgz unitycircle/*
tar czvf ../../sourceforge/html/tools/sinuswave.tgz sinuswave/*
cd ../..

}

function CleanUpBackups(){
echo "Cleaning out backups."
find . -name *~ -print -exec rm -v {} \;
find . -name *backup -print -exec rm -v {} \;
sleep 1

}



7.9. RAPIERPROJECT CODE 157

function MakeTarlatex(){
echo "Making a tar ball from the latex documentation."
cd documentation
tar czvf ../sourceforge/html/documentation/rapier.latex.tgz latex/*
cd ..

}

function Getrapierproject(){
echo "Updating rapierproject."
rsync -vut rapierproject sourceforge/html/tools/rapierproject
rsync -vut rapierproject documentation/latex/sw-bmd/rapierproject

}

function Getitctools(){
echo "Updating itctools."
rsync -vut /usr/bin/itctools sourceforge/html/tools/itctools

}

function Z8code(){
echo "Collecting the Z8 source code."
rsync -vut /mnt/c-drev/rapier/* software/z8/
CleanUpBackups
cd software/
tar czvf ../sourceforge/html/sourcecode/z8.tgz z8/*
cd ..

}

function GUIcode(){
echo "Collecting the GUI code."
rsync -vut /var/www/banshee/* software/web-gui/
CleanUpBackups
cd software/
tar czvf ../sourceforge/html/sourcecode/gui.tgz gui/*
cd ..

}

function BuildOnlineDocumentationFromPDF(){
echo "Building online documentaion from PDF."
cd sourceforge/html/documentation/online/
cp ../rapier.pdf ./
pdftohtml -c rapier.pdf
rm rapier.pdf
cd ../../../..

}

function CompileLatex(){
echo "Compile Latex."
cd documentation/latex/
echo "Compiling LaTeX files"
latex rapier.tex
cd ../..

}

function DVI2PDF(){
echo "Creating PDF from DVI."
cd documentation/latex/
echo "DVI -> PDF"
dvipdf rapier.dvi
cd ../..
mv documentation/latex/rapier.pdf sourceforge/html/documentation/

}

function UploadHomepage(){
echo "Uploading homepage"
echo "html"
rsync -vut -e ssh sourceforge/html/*html $WEBTARGET/
echo "jpg"
rsync -vut -e ssh sourceforge/html/*jpg $WEBTARGET/
echo "php"
rsync -vut -e ssh sourceforge/html/*php $WEBTARGET/
echo "pictures/"
rsync -vut -e ssh sourceforge/html/pictures/* $WEBTARGET/pictures/
echo "pics/"
rsync -vut -e ssh sourceforge/html/pics/* $WEBTARGET/pics/

}

function UploadOnlineDocumentation(){
echo "Uploading Online Documentation"
echo "online"
rsync -vut -e ssh sourceforge/html/documentation/online/* $WEBTARGET/documentation/online/
echo "z8"
rsync -vut -e ssh sourceforge/html/documentation/z8/* $WEBTARGET/documentation/z8/
echo "gui"
rsync -vut -e ssh sourceforge/html/documentation/gui/* $WEBTARGET/documentation/gui/

}

function UploadLatexDocumentation(){
echo "Uploading Latex documenation"
rsync -vut -e ssh sourceforge/html/documentation/rapier.latex.tgz $WEBTARGET/documentation/

}

function UploadPdfDocumentation(){
echo "Uploading PDF documenation"
rsync -vut -e ssh sourceforge/html/documentation/rapier.pdf $WEBTARGET/documentation/

}

function UploadSourceCode(){
echo "Uploading Source Code"
rsync -vut -e ssh sourceforge/html/sourcecode/* $WEBTARGET/sourcecode/



158 CHAPTER 7. APPENDIX

}

function UploadTools(){
echo "Uploading Tools"
rsync -vut -e ssh sourceforge/html/tools/* $WEBTARGET/tools/

}

function UploadApplicationNotes(){
echo "Uploading Application Notes"
rsync -vut -e ssh sourceforge/html/application_notes/* $WEBTARGET/application_notes/

}

function CopyPartlists(){
echo "Getting Partlists"
cp -v hardware/*/*partlist.txt documentation/latex/hw-bmd/

}

function UpdatePhotos(){
BASEDIRNAME[1]="documentation/photo"
BASEDIRNAME[2]="documentation/photo"
BASEDIRNAME[3]="documentation/photo"
BASEDIRNAME[4]="documentation/photo"
BASEDIRNAME[5]="documentation/photo"
BASEDIRNAME[6]="documentation/photo"
BASEDIRNAME[7]="documentation/photo"
BASEDIRNAME[8]="documentation/photo"
BASEDIRNAME[9]="documentation/photo"
BASEDIRNAME[10]="documentation/photo"
BASEDIRNAME[11]="documentation/photo"
BASEDIRNAME[12]="documentation/photo"

BASEDIRNAME[13]="test_and_measurement/analog_IO"
BASEDIRNAME[14]="test_and_measurement/analog_IO"
BASEDIRNAME[15]="test_and_measurement/analog_IO"
BASEDIRNAME[16]="test_and_measurement/analog_IO"

BASEFILENAME[1]="ab-buttom-photo"
BASEFILENAME[2]="ab-top-photo"
BASEFILENAME[3]="aib-photo"
BASEFILENAME[4]="aob-photo"
BASEFILENAME[5]="dib-photo"
BASEFILENAME[6]="dob-photo"
BASEFILENAME[7]="full-system1-photo"
BASEFILENAME[8]="full-system2-photo"
BASEFILENAME[9]="mpb-photo"
BASEFILENAME[10]="z8-photo"
BASEFILENAME[11]="loop_output_to_input"
BASEFILENAME[12]="aob2v"

BASEFILENAME[13]="ad-linearity"
BASEFILENAME[14]="da-linearity"
BASEFILENAME[15]="dad-linearity"
BASEFILENAME[16]="user-input-linearity"

for index in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
do

echo ""
echo ""
echo ""
echo "Managing ${BASEDIRNAME[index]} \ ${BASEFILENAME[index]}"
echo ""
BASEDIRNAME="${BASEDIRNAME[index]}"
BASEFILENAME="${BASEFILENAME[index]}"
convert -verbose $BASEDIRNAME/$BASEFILENAME.jpg sourceforge/html/pictures/$BASEFILENAME.jpg
convert -verbose -resize 800x600 $BASEDIRNAME/$BASEFILENAME.jpg sourceforge/html/pictures/$BASEFILENAME-half.jpg
convert -verbose -size 240x240 -resize 240x240 $BASEDIRNAME/$BASEFILENAME.jpg sourceforge/html/pictures/$BASEFILENAME-thumbnail.jpg
convert -verbose -colors 256 -density 75x75 -compress JPEG $BASEDIRNAME/$BASEFILENAME.jpg documentation/latex/pictures/$BASEFILENAME.eps

done
}

function UpdateSchematics(){
echo "Updating pictures"

BASEDIRNAME[1]="hardware/adaptor_board"
BASEDIRNAME[2]="hardware/analog_input_board"
BASEDIRNAME[3]="hardware/analog_output_board"
BASEDIRNAME[4]="hardware/digital_input_board"
BASEDIRNAME[5]="hardware/digital_output_board"
BASEDIRNAME[6]="hardware/monitoring_and_power_board"
BASEDIRNAME[7]="hardware/monitoring_and_power_board"

BASEFILENAME[1]="ab-schematic"
BASEFILENAME[2]="aib-schematic"
BASEFILENAME[3]="aob-schematic"
BASEFILENAME[4]="dib-schematic"
BASEFILENAME[5]="dob-schematic"
BASEFILENAME[6]="mpb-schematic"
BASEFILENAME[7]="power_cable"

for index in 1 2 3 4 5 6 7
do

echo ""
echo ""
echo ""
echo "Managing ${BASEDIRNAME[index]} \ ${BASEFILENAME[index]}"
echo ""
BASEDIRNAME="${BASEDIRNAME[index]}"
BASEFILENAME="${BASEFILENAME[index]}"
convert -verbose -colors 4 -compress BZip +antialias -density 150x150 +dither $BASEDIRNAME/$BASEFILENAME.png documentation/latex/pictures/$BASEFILENAME.eps



7.9. RAPIERPROJECT CODE 159

convert -verbose -size 240x240 -resize 240x240 $BASEDIRNAME/$BASEFILENAME.png sourceforge/html/pictures/$BASEFILENAME-thumbnail.jpg
convert -verbose $BASEDIRNAME/$BASEFILENAME.png sourceforge/html/pictures/$BASEFILENAME.jpg

done
}

function UpdateCircuitDescriptionSchematics(){
echo "Updating pictures"

BASEFILENAME[1]="adress-comparator"
BASEFILENAME[2]="board-selection"
BASEFILENAME[3]="bus-input"
BASEFILENAME[4]="bus-output"
BASEFILENAME[5]="current-to-voltage"
BASEFILENAME[6]="da-converter"
BASEFILENAME[7]="led-driver"
BASEFILENAME[8]="opto-coupled-input"
BASEFILENAME[9]="surge-protection"

for index in 1 2 3 4 5 6 7 8 9
do

echo ""
echo ""
echo ""
echo "Managing hardware/circuit-description \ ${BASEFILENAME[index]}"
echo ""
BASEDIRNAME="hardware/circuit-description"
BASEFILENAME="${BASEFILENAME[index]}"
convert -verbose -colors 4 -compress BZip +antialias -density 150x150 +dither $BASEDIRNAME/$BASEFILENAME.png documentation/latex/pictures/$BASEFILENAME.eps

done
}

function UpdateCalculationIllustrations(){
echo "Updating calculation illustrations"
rsync -vut hardware/calculation_illustrations/*eps documentation/latex/calculations/illustrations/

}

function UpdateBlockDiagrams(){
echo "Updating block diagrams"
rsync -vut documentation/illustrations/*eps documentation/latex/pictures/
rsync -vut documentation/software/gui/*eps documentation/latex/pictures/

}

while [ "$choice" != "q" ]
do

$DIALOG --clear --title "Rapier project" \
--menu "Choose an action:" 49 130 44 \
"Change upload target" "Currently uploading to: $WEBTARGET." \
"Everything" "Do everything. Takes a very long time." \
"DocumentationUploadBackup" "Updates documentation, upload documentation, backup everything." \
"Illustrations" "Update all illustrations." \
"Illustrations->Photos" "Update photos into docs and html." \
"Illustrations->Schematics" "Update schematics into docs and html." \

"Illustrations->CircuitDescriptions" "Update circuit description schematics into docs" \
"Illustrations->Calculations" "Update Calculation Illustrations into docs." \
"Illustrations->BlockDiagrams" "Update Block Diagrams into docs." \
"Documentation" "All jobs on documentation." \
"Documentation->Partlists" "Copy partlists into documentation(latex)." \
"Documentation->Tar Latex" "Creates a tar ball of latex." \
"Documentation->Latex" "Compile Latex." \
"Documentation->DVI->PDF" "Compile latex to PDF." \
"Documentation->Online" "Build Online Documentation from PDF." \
"Documentation->Z8Code" "Updating Z8 code documentation" \
"Documentation->GUICode" "Updating GUI code documentation" \
"SourceCode" "All jobs on Source Code." \
"SourceCode->Z8" "Z8 Source Code." \
"SourceCode->GUI" "GUI Source Code." \
"Tools" "All jobs on tools." \
"Tools->Rapierproject" "Collects Rapier Project software" \
"Tools->itctools" "Collects itcutils software" \
"Tools->LatexTools" "Collects latex tools software" \
"Upload" "All upload jobs." \
"Upload->HTML" "Upload html to sourceforge.net." \
"Upload->Online Documentation" "Upload Online Documentation to sourceforge.net." \
"Upload->Latex Documentation" "Upload Latex Documentation to sourceforge.net." \
"Upload->PDF Documentation" "Upload PDF Documentation to sourceforge.net." \
"Upload->Tools" "Upload tools to sourceforge.net." \
"Upload->SourceCode" "Upload Source Code to sourceforge.net." \
"Upload->ApplicationNotes" "Upload Application Notes to sourceforge.net." \
"Backup" "All backup jobs." \
"Backup->Software" "Backup all software." \
"Backup->Source Forge" "Backup Source Forge." \
"Backup->Documentation" "Backup Documentation." \
"Backup->Hardware" "Backup Hardware." \
"Backup->Management" "Backup Management." \
"Backup->Tools" "Backup Tools." \
2> $tempfile

retval=$?

choice=`cat $tempfile`

case $retval in
0)

#######################################################
if [ "$choice" == "Change upload target" ]
then

toggletarget
fi

#######################################################



160 CHAPTER 7. APPENDIX

if [ "$choice" == "Illustrations->Photos" -o "$choice" == "Everything" -o "$choice" == "Illustrations" ]
then

UpdatePhotos
fi
if [ "$choice" == "Illustrations->Schematics" -o "$choice" == "Everything" -o "$choice" == "Illustrations" ]
then

UpdateSchematics
fi
if [ "$choice" == "Illustrations->CircuitDescriptions" -o "$choice" == "Everything" -o "$choice" == "Illustrations" ]
then

UpdateCircuitDescriptionSchematics
fi
if [ "$choice" == "Illustrations->Calculations" -o "$choice" == "Everything" -o "$choice" == "Illustrations" ]
then

UpdateCalculationIllustrations
fi
if [ "$choice" == "Illustrations->BlockDiagrams" -o "$choice" == "Everything" -o "$choice" == "Illustrations" ]
then

UpdateBlockDiagrams
fi

#######################################################
if [ "$choice" == "Documentation->Partlists" -o "$choice" == "Everything" -o "$choice" == "Documentation" -o "$choice" == "DocumentationUploadBackup" ]
then

CopyPartlists
fi
if [ "$choice" == "Documentation->Latex" -o "$choice" == "Everything" -o "$choice" == "Documentation" -o "$choice" == "DocumentationUploadBackup" ]
then

CompileLatex
fi
if [ "$choice" == "Documentation->DVI->PDF" -o "$choice" == "Everything" -o "$choice" == "Documentation" -o "$choice" == "DocumentationUploadBackup" ]
then

DVI2PDF
fi
if [ "$choice" == "Documentation->Online" -o "$choice" == "Everything" -o "$choice" == "Documentation" -o "$choice" == "DocumentationUploadBackup" ]
then

BuildOnlineDocumentationFromPDF
fi
if [ "$choice" == "Documentation->Tar Latex" -o "$choice" == "Everything" -o "$choice" == "Documentation" -o "$choice" == "DocumentationUploadBackup" ]
then

MakeTarlatex
fi
if [ "$choice" == "Documentation->Z8Code" -o "$choice" == "Everything" -o "$choice" == "Documentation" -o "$choice" == "DocumentationUploadBackup" ]
then

UpdateZ8Documentation
fi
if [ "$choice" == "Documentation->GUICode" -o "$choice" == "Everything" -o "$choice" == "Documentation" -o "$choice" == "DocumentationUploadBackup" ]
then

UpdateGUIDocumentation
fi

#######################################################
if [ "$choice" == "SourceCode->Z8" -o "$choice" == "Everything" -o "$choice" == "SourceCode" ]
then

Z8code
fi
if [ "$choice" == "SourceCode->GUI" -o "$choice" == "Everything" -o "$choice" == "SourceCode" ]
then

GUIcode
fi

#######################################################
if [ "$choice" == "Tools->Rapierproject" -o "$choice" == "Everything" -o "$choice" == "Tools" ]
then

Getrapierproject
fi
if [ "$choice" == "Tools->itctools" -o "$choice" == "Everything" -o "$choice" == "Tools" ]
then

Getitctools
fi
if [ "$choice" == "Tools->LatexTools" -o "$choice" == "Everything" -o "$choice" == "Tools" ]
then

MakeLatexTools
fi

#######################################################
if [ "$choice" == "Upload->HTML" -o "$choice" == "Everything" -o "$choice" == "Upload" -o "$choice" == "DocumentationUploadBackup" ]
then

UploadHomepage
fi
if [ "$choice" == "Upload->Online Documentation" -o "$choice" == "Everything" -o "$choice" == "Upload" -o "$choice" == "DocumentationUploadBackup" ]
then

UploadOnlineDocumentation
fi
if [ "$choice" == "Upload->Latex Documentation" -o "$choice" == "Everything" -o "$choice" == "Upload" -o "$choice" == "DocumentationUploadBackup" ]
then

UploadLatexDocumentation
fi
if [ "$choice" == "Upload->PDF Documentation" -o "$choice" == "Everything" -o "$choice" == "Upload" -o "$choice" == "DocumentationUploadBackup" ]
then

UploadPdfDocumentation
fi
if [ "$choice" == "Upload->Tools" -o "$choice" == "Everything" -o "$choice" == "Upload" -o "$choice" == "DocumentationUploadBackup" ]
then

UploadTools
fi
if [ "$choice" == "Upload->SourceCode" -o "$choice" == "Everything" -o "$choice" == "Upload" -o "$choice" == "DocumentationUploadBackup" ]
then

UploadSourceCode
fi
if [ "$choice" == "Upload->ApplicationNotes" -o "$choice" == "Everything" -o "$choice" == "Upload" -o "$choice" == "DocumentationUploadBackup" ]
then

UploadApplicationNotes



7.9. RAPIERPROJECT CODE 161

fi

#######################################################
if [ "$choice" == "Backup->Software" -o "$choice" == "Everything" -o "$choice" == "Backup" -o "$choice" == "DocumentationUploadBackup" ]
then

BackupSoftware
fi
if [ "$choice" == "Backup->Source Forge" -o "$choice" == "Everything" -o "$choice" == "Backup" -o "$choice" == "DocumentationUploadBackup" ]
then

BackupSourceForge
fi
if [ "$choice" == "Backup->Documentation" -o "$choice" == "Everything" -o "$choice" == "Backup" -o "$choice" == "DocumentationUploadBackup" ]
then

BackupDocumentation
fi
if [ "$choice" == "Backup->Hardware" -o "$choice" == "Everything" -o "$choice" == "Backup" -o "$choice" == "DocumentationUploadBackup" ]
then

BackupHardware
fi
if [ "$choice" == "Backup->Management" -o "$choice" == "Everything" -o "$choice" == "Backup" -o "$choice" == "DocumentationUploadBackup" ]
then

BackupManagement
fi
if [ "$choice" == "Backup->Tools" -o "$choice" == "Everything" -o "$choice" == "Backup" -o "$choice" == "DocumentationUploadBackup" ]
then

BackupTools
fi

echo "Jobs done!!"
sleep 1
;;

1)
choice="q";;

255)
choice="q";;

esac

done

clear



162 CHAPTER 7. APPENDIX

7.10 Unnumbered pages
The last part of the project is pages copied from various sources. These pages

are not numbered.


